1. Eaton, S. W., Fu, A., Wong, A. B., Ning, C.-Z. & Yang, P. Semiconductor nanowire lasers. Nat Rev Mater 1, 16028 (2016).
2. Huang, M. H. et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, 1897–1899 (2001).
3. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater 1, 106–110 (2002).
4. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).
5. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater 7, 701–706 (2008).
6. Pan, A., Liu, R., Sun, M. & Ning, C.-Z. Spatial Composition Grading of Quaternary ZnCdSSe Alloy Nanowires with Tunable Light Emission between 350 and 710 nm on a Single Substrate. ACS Nano 4, 671–680 (2010).
7. Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon 7, 963–968 (2013).
8. Sumikura, H. et al. Mid-Infrared Lasing of Single Wurtzite InAs Nanowire. Nano Lett. 7 (2019).
9. Bao, Q. et al. On-chip single-mode CdS nanowire laser. Light Sci Appl 9, 42 (2020).
10. Moutanabbir, O. et al. Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors. Appl. Phys. Lett. 118, 110502 (2021).
11. Wirths, S. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photon 9, 88–92 (2015).
12. Bao, S. et al. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nature Communications 8, 1845 (2017).
13. Joo, H.-J. et al. 1D photonic crystal direct bandgap GeSn-on-insulator laser. Appl. Phys. Lett. 119, 201101 (2021).
14. Kim, Y. et al. Enhanced GeSn Microdisk Lasers Directly Released on Si. Advanced Optical Materials 10, 2101213 (2022).
15. Jung, Y. et al. Optically pumped low-threshold microdisk lasers on a GeSn-on-insulator substrate with reduced defect density. Photonics Research (2022) doi:10.1364/PRJ.455443.
16. Kawamura, Y. et al. Direct-gap photoluminescence from germanium nanowires. Phys. Rev. B 86, 035306 (2012).
17. Meng, A. C. et al. Core-Shell Germanium/Germanium–Tin Nanowires Exhibiting Room-Temperature Direct- and Indirect-Gap Photoluminescence. Nano Lett. 16, 7521–7529 (2016).
18. Biswas, S. et al. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires. Nat Commun 7, 11405 (2016).
19. Assali, S. et al. Growth and Optical Properties of Direct Band Gap Ge/Ge 0.87 Sn 0.13 Core/Shell Nanowire Arrays. Nano Lett. 17, 1538–1544 (2017).
20. Seifner, M. S. et al. Epitaxial Ge 0.81 Sn 0.19 Nanowires for Nanoscale Mid-Infrared Emitters. ACS Nano 13, 8047–8054 (2019).
21. Meng, A. C. et al. Coupling of coherent misfit strain and composition distributions in core–shell Ge/Ge1-xSnx nanowire light emitters. Materials Today Nano 5, 100026 (2019).
22. Assali, S. et al. Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano 14, 2445–2455 (2020).
23. Meng, A. C. et al. Growth mode control for direct-gap core/shell Ge/GeSn nanowire light emission. Materials Today 40, 101–113 (2020).
24. Meng, A. C. et al. Bending and precipitate formation mechanisms in epitaxial Ge-core/GeSn-shell nanowires. Nanoscale 13, 17547–17555 (2021).
25. Albani, M. et al. Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. Nanoscale 10, 7250–7256 (2018).
26. Luo, L. et al. Extended-SWIR Photodetection in All-Group IV Core/Shell Nanowires. ACS Photonics 9, 914–921 (2022).
27. Koelling, S. et al. High depth resolution analysis of Si/SiGe multilayers with the atom probe. Appl. Phys. Lett. 95, 144106 (2009).
28. Koelling, S. et al. Atom-by-Atom Analysis of Semiconductor Nanowires with Parts Per Million Sensitivity. Nano Lett. 17, 599–605 (2017).
29. Assali, S. et al. Strain engineering in Ge/GeSn core/shell nanowires. Appl. Phys. Lett. 115, 113102 (2019).
30. Elbaz, A. et al. Reduced Lasing Thresholds in GeSn Microdisk Cavities with Defect Management of the Optically Active Region. ACS Photonics 7, 2713–2722 (2020).
31. Pavesi, L. & Guzzi, M. Photoluminescence of Al x Ga 1− x As alloys. Journal of Applied Physics 75, 4779–4842 (1994).
32. Sukhdeo, D. S., Nam, D., Kang, J.-H., Brongersma, M. L. & Saraswat, K. C. Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain. Photon. Res. 2, A8 (2014).
33. Chen, R. et al. Nanolasers grown on silicon. Nature Photonics 5, 170–175 (2011).
34. Li, K. H., Liu, X., Wang, Q., Zhao, S. & Mi, Z. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nature Nanotech 10, 140–144 (2015).
35. Petykiewicz, J. et al. Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities. Nano Lett. 16, 2168–2173 (2016).
36. Sukhdeo, D. et al. Theoretical Modeling for the Interaction of Tin Alloying With N-Type Doping and Tensile Strain for GeSn Lasers. IEEE Electron Device Letters 37, 1307–1310 (2016).
37. Wang, B. et al. GeSnOI mid-infrared laser technology. Light Sci Appl 10, 232 (2021).
38. Sukhdeo, D. S. et al. Ge microdisk with lithographically-tunable strain using CMOS-compatible process. Opt. Express, OE 23, 33249–33254 (2015).