1. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. *Nature* **546,** 270-273 (2017).

2. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. *Nature* **563,** 94-99 (2018).

3. Albarakati, S. et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. *Sci Adv* **5,** eaaw0409 (2019).

4. Jiang, S. Shan, J. ＆ Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. *Nat Mater* **17,** 406-410 (2018).

5. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. *Nature* **546,** 265-269 (2017).

6. Purbawati, A. et al. In-plane magnetic domains and Néel-like domain walls in thin flakes of the room temperature CrTe2 van der Waals ferromagnet. *Acs Appl Mater Inter* **12,** 30702-30710 (2020).

7. Meng, L. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1*T*-CrTe2 grown by chemical vapor deposition. *Nat Commun* **12,** 809 (2021).

8. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2*H* MoTe2. *Science* **372,** 195-200 (2021).

9. Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. *Nat Nanotechnol* **17,** 33-38 (2022).

10. Barth, J. V. Costantini, G. ＆ Kern, K. Engineering atomic and molecular nanostructures at surfaces. *Nature* **437,** 671-679 (2005).

11. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. *Nature* **605,** 69-75 (2022).

12. Zhang, K. et al. Visualizing van der Waals epitaxial growth of 2D heterostructures. *Adv Mater* **33,** 2105079 (2021).

13. Wenisch, J. et al. MBE growth of MCT on GaAs substrates at AIM. *J Electron Mater* **41,** 2828-2832 (2012).

14. Meyerson, B. S. Non‐equilibrium processes in low temperature silicon epitaxy. *AIP Conference Proceedings* **167,** 22-30 (1988).

15. Wang, H. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. *Acs Nano* **14,** 10045-10053 (2020).

16. Atsushi, K. ＆ Kazuki, Y. Ultrasharp interfaces grown with van der Waals epitaxy. *Surface Science* **174,** 556-560 (1986).

17. Heo, H. et al. Frank–van der Merwe growth versus Volmer–Weber growth in successive stacking of a few-layer Bi2Te3/Sb2Te3 by van der Waals heteroepitaxy: the critical roles of finite lattice-mismatch with seed substrates. *Advanced Electronic Materials* **3,** 1600375 (2017).

18. Freitas, D. C. et al. Ferromagnetism in layered metastable 1T-CrTe2. *J Phys Condens Matter* **27,** 176002 (2015).

19. Huang, L. L. et al. Catalyzed kinetic growth in two-dimensional MoS2. *J Am Chem Soc* **142,** 13130-13135 (2020).

20. Harrison, S. E. et al. Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy. *Appl Phys Lett* **102,** 171906 (2013).

21. Ou, Y. et al. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. *Nat Commun* **13,** 2972 (2022).

22. Ngabonziza, P. et al. In situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects. *Phys Rev B* **92,** 035405 (2015).

23. Figueroa, A. I. et al. Structural and magnetic properties of granular Co-Pt multilayers with perpendicular magnetic anisotropy. *Phys Rev B* **90,** 174421 (2014).

24. Yu, W. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. *Adv Mater* **31,** 1903779 (2019).

25. Karplus, R. ＆ Luttinger, J. M. Hall effect in ferromagnetics. *Physical Review* **95,** 1154-1160 (1954).

26. Jungwirth, T. Niu, Q. ＆ Macdonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. *Phys Rev Lett* **88,** (2002).

27. Yao, Y. et al. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. *Phys Rev Lett* **92,** 037204 (2004).

28. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. *Science* **302,** 92-95 (2003).

29. Dudarev, S. L. Botton, G. A. Savrasov, S. Y. Humphreys, C. J. ＆ Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Phys Rev B* **57,** 1505-1509 (1998).

30. Anisimov, V. I. Zaanen, J. ＆ Andersen, O. K. Band theory and Mott insulators - Hubbard-*U* instead of Stoner-*I*. *Phys Rev B* **44,** 943-954 (1991).

31. Sohn, B. et al. Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films. *Nat Mater* **20,** 1643-1649 (2021).

32. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. *Rev Mod Phys* **91,** 035004 (2019).

33. Lin, P.-H. et al. Manipulating exchange bias by spin–orbit torque. *Nat Mater* **18,** 335-341 (2019).

34. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. *Phys Rev Lett* **119,** 077702 (2017).

35. Khang, N. H. D. Ueda, Y. ＆ Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. *Nat Mater* **17,** 808-813 (2018).

36. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. *Nat Mater* **13,** 699-704 (2014).

37. Liu, L. Q. et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. *Science* **336,** 555-558 (2012).

38. Liu, L. Lee, O. J. Gudmundsen, T. J. Ralph, D. C. ＆ Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. *Phys Rev Lett* **109,** 096602 (2012).

39. Meng, K. et al. Modulated switching current density and spin-orbit torques in MnGa/Ta films with inserting ferromagnetic layers. *Sci Rep-Uk* **6,** 38375 (2016).

40. Shin, I. et al. Spin–orbit torque switching in an all-van der Waals heterostructure. *Adv Mater* **34,** 2101730 (2022).

41. Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. *Nat Commun* **8,** 1364 (2017).

42. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. *Nature* **511,** 449-451 (2014).

43. Dc, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films. *Nat Mater* **17,** 800-807 (2018).

44. Tobin, J. G. Waddill, G. D. Jankowski, A. F. Sterne, P. A. ＆ Pappas, D. P. Comparison of branching ratio and sum-rule analyses of magnetic circular-dichroism in x-ray-absorption spectroscopy. *Phys Rev B* **52,** 6530-6541 (1995).

45. Kresse, G. ＆ Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys Rev B* **54,** 11169-11186 (1996).

46. Perdew, J. P. Burke, K. ＆ Ernzerhof, M. Generalized gradient approximation made simple. *Phys Rev Lett* **77,** 3865-3868 (1996).

47. Marzari, N. ＆ Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. *Phys Rev B* **56,** 12847-12865 (1997).

48. Mostofi, A. A. et al. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. *Comput Phys Commun* **185,** 2309-2310 (2014).

49. Wu, Q. S. Zhang, S. N. Song, H. F. Troyer, M. ＆ Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. *Comput Phys Commun* **224,** 405-416 (2018).