1. WHO. Global tuberculosis report. Geneva: World Health Organization (2021).
2. Jain SK, et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol 19, 521-525 (2018).
3. Wilkinson RJ, et al. Tuberculous meningitis. Nat Rev Neurol 13, 581-598 (2017).
4. Chiang SS, et al. Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 14, 947-957 (2014).
5. Thwaites GE, et al. Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J Infect Dis 192, 79-88 (2005).
6. Senbayrak S, et al. Antituberculosis drug resistance patterns in adults with tuberculous meningitis: results of haydarpasa-iv study. Ann Clin Microbiol Antimicrob 14, 47 (2015).
7. Vinnard C, et al. Long-term Mortality of Patients With Tuberculous Meningitis in New York City: A Cohort Study. Clin Infect Dis 64, 401-407 (2017).
8. Heemskerk AD, et al. Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen. Clin Infect Dis 65, 20-28 (2017).
9. Evans EE, et al. Long term outcomes of patients with tuberculous meningitis: The impact of drug resistance. PLoS One 17, e0270201 (2022).
10. Keam SJ. Pretomanid: First Approval. Drugs 79, 1797-1803 (2019).
11. Stover CK, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962-966 (2000).
12. Singh R, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392-1395 (2008).
13. Dogra M, et al. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver. Br J Pharmacol 162, 226-236 (2011).
14. Lenaerts AJ, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49, 2294-2301 (2005).
15. Muller M, dela Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 48, 1441-1453 (2004).
16. Ordonez AA, et al. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat Med 26, 529-534 (2020).
17. Tucker EW, et al. Noninvasive (11)C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med 10, eaau0965 (2018).
18. Mota F, et al. Radiosynthesis and Biodistribution of (18)F-Linezolid in Mycobacterium tuberculosis-Infected Mice Using Positron Emission Tomography. ACS Infect Dis 6, 916-921 (2020).
19. Tucker EW, et al. Microglia activation in a pediatric rabbit model of tuberculous meningitis. Dis Model Mech 9, 1497-1506 (2016).
20. Ruiz-Bedoya CA, et al. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest 132, (2022).
21. Khotavivattana T, et al. 18F‐Labeling of Aryl‐SCF3,‐OCF3 and‐OCHF2 with [18F] Fluoride. Angewandte Chemie 127, 10129-10133 (2015).
22. Ahmad Z, et al. PA-824 exhibits time-dependent activity in a murine model of tuberculosis. Antimicrob Agents Chemother 55, 239-245 (2011).
23. European Medicines Agency. Pretomanid FGK, Assessment report. European Medicines Agency (2020).
24. Radiosynthesis and Biodistribution of 18 F-Linezolid in Mycobacterium tuberculosis-Infected Mice Using Positron Emission Tomography. ACS Infect Dis (2020).
25. Ordonez AA, et al. Radiosynthesis and PET Bioimaging of (76)Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis 5, 1996-2002 (2019).
26. Thwaites GE, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351, 1741-1751 (2004).
27. WHO. Ten threats to global health (2019).
28. Ordonez AA, et al. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 131, (2021).
29. Bratkowska D, et al. Determination of the antitubercular drug PA-824 in rat plasma, lung and brain tissues by liquid chromatography tandem mass spectrometry: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 988, 187-194 (2015).
30. Bjarnsholt T, Whiteley M, Rumbaugh KP, Stewart PS, Jensen PO, Frimodt-Moller N. The importance of understanding the infectious microenvironment. Lancet Infect Dis 22, e88-e92 (2022).
31. Xu J, et al. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother 63, (2019).
32. Beer R, et al. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrobial agents and chemotherapy 51, 379-382 (2007).
33. Akkerman OW, et al. Pharmacokinetics of Bedaquiline in Cerebrospinal Fluid and Serum in Multidrug-Resistant Tuberculous Meningitis. Clin Infect Dis 62, 523-524 (2016).
34. Upton CM, Steele CI, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J Antimicrob Chemother 77, 1720-1724 (2022).
35. Sun F, et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother 58, 6297-6301 (2014).
36. Tucker EW, et al. Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis in Rabbits and Humans. Antimicrob Agents Chemother 63, (2019).
37. Lappin G, Noveck R, Burt T. Microdosing and drug development: past, present and future. Expert Opin Drug Metab Toxicol 9, 817-834 (2013).
38. Burt T, et al. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 19, 801-818 (2020).
39. Weinstein EA, et al. Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 56, 6284-6290 (2012).
40. Rosenthal IM, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother 56, 4331-4340 (2012).
41. Ordonez AA, et al. Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59, 642-649 (2015).
42. Irwin SM, et al. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis 2, 251-267 (2016).
43. Nuermberger E, et al. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 50, 2621-2625 (2006).
44. Bigelow KM, et al. Pharmacodynamic Correlates of Linezolid Activity and Toxicity in Murine Models of Tuberculosis. J Infect Dis 223, 1855-1864 (2021).
45. O'Connell KE, et al. Practical murine hematopathology: a comparative review and implications for research. Comp Med 65, 96-113 (2015).
46. Stancil SL, Mirzayev F, Abdel-Rahman SM. Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date. Drug Des Dev Ther15, 2815-2830 (2021).