1.Stephenson JF, Young KA, Fox J, et al. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos Trans R Soc Lond Biol Sci.2017;372(1719):20160093. DOI: 10.1098/rstb.2016.0093
2. Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016; 12;34(17):2008-14. DOI: 10.1016/j.vaccine.2016.02.063.
3. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020; 584(7821):457-462. DOI: 10.1038/s41586-020-2550-z.
4. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 25;181(7):1489-1501.e15. DOI: 10.1016/j.cell.2020.05.015.
5. Pia L. SARS-CoV-2-reactive T cells in patients and healthy donors. Nat Rev Immunol. 2020; 20(6):353. DOI: 10.1038/s41577-020-0333-2.
6. Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis. 2020;39(5):355-368. DOI:10.1097/INF.0000000000002660
7. Mesel-Lemoine M, Millet J, Vidalain PO, et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol. 2012;86(14):7577-7587. DOI:10.1128/JVI.00269-12
8. He D, Zhao S, Xu X, et al. Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control. BMC Public Health. 2020;20(1):1558. DOI: 10.1186/s12889-020-09624-2.
9. Rizeq B, Zakaria Z, Ouhtit A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 2018;109(1):33-42. DOI:10.1111/cas.13437
10. Taguchi F, Matsuyama S, Soluble Receptor Potentiates Receptor-Independent Infection by Murine Coronavirus. J Virol. 2002;76(3):950-8.
11.Baric RS, Sullivan E, Hensley L, et al. Persistent infection promotes cross-species transmissibility of mouse hepatitis virus. J Virol. 1999;73(1): 638-649.
12. Wentworth DE, Holmes KV. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol. 2001;75(20):9741-9752. DOI:10.1128/JVI.75.20.9741-9752.2001
13.Hansen GH, Delmas B, Besnardeau L, et al., The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol. 1998;72(1):527-534.
14. Rossen JW, Bekker CP, Voorhout WF, et al. Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells. J Virol. 1994;68(12):7966-7973.
15. Chan CM, Chu H, Wang Y, et al. Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus. J Virol. 2016;90(20): 9114-9127. DOI:10.1128/JVI.01133-16
16.Jaume M, Yip MS, Chung Y, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol. 2011;85(20):10582-10597. DOI:10.1128/JVI.00671-11
17.Kammerer R, Zimmermann W, Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol. 2010; 8:12. DOI:10.1186/1741-7007-8-12
18. Booth JW, Telio D, Liao EH, et al. Phosphatidylinositol 3-kinases in carcinoembryonic antigen-related cellular adhesion molecule-mediated internalization of Neisseria gonorrhoeae. J Biol Chem. 2003; 278(16):14037-14045. DOI:10.1074/jbc.M211879200
19. Spiegel M, Schneider K, Weber F, et al. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol. 2006; 87(Pt 7):1953-1960. DOI:10.1099/vir.0.81624-0
20. Xu XK, Liu XF, Wu W, et al., Reconstruction of Transmission Pairs for novel Coronavirus Disease 2019 (COVID-19) in mainland China: Estimation of Super-spreading Events, Serial Interval, and Hazard of Infection. Clin Infect Dis. 2020; [published ahead of print 2020 Jun 18:ciaa790. DOI: 10.1093/cid/ciaa790].
21. Lloyd-Smith JO, Schreiber SJ, Kopp PE, et al. Superspreading and the effect of individual variation on disease emergence. Nature. 2005; 17:438(7066):355-9.
DOI: 10.1038/nature04153.
22. Diekmann O, Heesterbeek JAP. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation. S. Levin, Ed., Wiley series in mathematical and computational biology (John Wiley & sons, New York, 2000).
23. Adam DC, Wu P, Wong J, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med. 2020; [published ahead of print https://doi.org/10.1038/s41591-020-1092-0]
24. Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveill. 2015; 20(25):14-8. DOI: 10.2807/1560-7917.es2015.20.25.21167
25. Kwok KO, Chan HHH, Huang Y, et al. Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan, and Singapore. J Hosp Infect. 2020; 105(4):682-685. DOI: 10.1016/j.jhin.2020.05.027. 32446721.
26. https://en.wikipedia.org/wiki/Structural_break
27. Woolhouse ME, Dye C, Etard JF, et al., Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A. 1997; 94:338–42.
28. Kyriakopoulos AM, A. Papaefthymiou A, N. Georgilas N, et al. The Potential Role of Super Spread Events in SARS-COV-2 Pandemic; a Narrative Review. Arch Acad Emerg Med.2020; 8(1):e74.
29. Riley S, Fraser C, Donelly CA, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003; 300(5627): 1961-6. DOI:10.1126/science.1086478
30. Oliveira DS, Medeiros NI, Gomes JAS. Immune response in COVID-19: What do we currently know? Microb Pathog. 2020;148:104484.