1 De Kruif, A. Factors influencing the fertility of a cattle population. J Reprod Fertil54, 507-518 (1978).
2 Diskin, M. G. & Sreenan, J. M. Fertilization and embryonic mortality rates in beef heifers after artificial insemination. J Reprod Fertil59, 463-468 (1980).
3 Diskin, M. G. & Morris, D. G. Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim43 Suppl 2, 260-267 (2008).
4 Sartori, R., Bastos, M. R. & Wiltbank, M. C. Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reprod Fertil Dev22, 151-158, doi:10.1071/RD09221 (2010).
5 Dunne, L. D., Diskin, M. G. & Sreenan, J. M. Embryo and foetal loss in beef heifers between day 14 of gestation and full term. Anim Reprod Sci58, 39-44 (2000).
6 Moraes, J. G. N. et al. Uterine influences on conceptus development in fertility-classified animals. Proc. Natl. Acad. Sci. U S A115, E1749-E1758, doi:10.1073/pnas.1721191115 (2018).
7 Ayalon, N. A review of embryonic mortality in cattle. J Reprod Fertil54, 483-493 (1978).
8 Matsuyama, S., Kojima, T., Kato, S. & Kimura, K. Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET. Reprod. Biol. Endocrinol. 10, 21, doi:10.1186/1477-7827-10-21 (2012).
9 Bazer, F. W. Uterine protein secretions: Relationship to development of the conceptus. J Anim Sci41, 1376-1382 (1975).
10 Roberts, R. M. & Bazer, F. W. The functions of uterine secretions. J Reprod Fertil82, 875-892 (1988).
11 Bazer, F. W., Wu, G., Johnson, G. A. & Wang, X. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways. Mol Cell Endocrinol398, 53-68, doi:10.1016/j.mce.2014.09.007 (2014).
12 Gray, C. A., Burghardt, R. C., Johnson, G. A., Bazer, F. W. & Spencer, T. E. Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction124, 289-300 (2002).
13 Gray, C. A. et al. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod64, 1608-1613 (2001).
14 Ruiz-Gonzalez, I. et al. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction149, 281-291, doi:10.1530/REP-14-0538 (2015).
15 Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C. & Palmarini, M. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod Fertil Dev19, 65-78 (2007).
16 Katagiri, S. & Takahashi, Y. Changes in EGF concentrations during estrous cycle in bovine endometrium and their alterations in repeat breeder cows. Theriogenology62, 103-112 (2004).
17 Forde, N. et al. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol Reprod81, 784-794 (2009).
18 Forde, N. et al. Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol Reprod84, 266-278 (2011).
19 Forde, N. et al. Effects of low progesterone on the endometrial transcriptome in cattle. Biol Reprod87, 124, doi:10.1095/biolreprod.112.103424 (2012).
20 Walker, C. G., Littlejohn, M. D., Mitchell, M. D., Roche, J. R. & Meier, S. Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains. Physiol Genomics44, 47-58, doi:10.1152/physiolgenomics.00254.2010 (2012).
21 Salilew-Wondim, D. et al. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol Genomics42, 201-218, doi:10.1152/physiolgenomics.00047.2010 (2010).
22 Killeen, A. P. et al. Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle. BMC Genomics15, 234, doi:10.1186/1471-2164-15-234 (2014).
23 Hayashi, K. G. et al. Differential gene expression profiling of endometrium during the mid-luteal phase of the estrous cycle between a repeat breeder (RB) and non-RB cows. Reprod. Biol. Endocrinol. 15, 20, doi:10.1186/s12958-017-0237-6 (2017).
24 Geary, T. W. et al. Identification of Beef Heifers with Superior Uterine Capacity for Pregnancy. Biol Reprod95, 47, doi:10.1095/biolreprod.116.141390 (2016).
25 Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science337, 1062-1065, doi:10.1126/science.1219855 (2012).
26 Weber, T. A. & Reichert, A. S. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol45, 503-511, doi:10.1016/j.exger.2010.03.018 (2010).
27 Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92, 829-839 (1998).
28 Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem280, 16456-16460, doi:10.1074/jbc.M501485200 (2005).
29 Priault, M. et al. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ12, 1613-1621, doi:10.1038/sj.cdd.4401697 (2005).
30 Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J27, 433-446, doi:10.1038/sj.emboj.7601963 (2008).
31 Zhang, Y. et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy3, 337-346 (2007).
32 Mijaljica, D., Prescott, M. & Devenish, R. J. Different fates of mitochondria: alternative ways for degradation? Autophagy3, 4-9 (2007).
33 Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol183, 795-803, doi:10.1083/jcb.200809125 (2008).
34 Nan, J. et al. Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta1864, 1260-1273, doi:10.1016/j.bbamcr.2017.03.006 (2017).
35 Chang, J. Y., Yi, H. S., Kim, H. W. & Shong, M. Dysregulation of mitophagy in carcinogenesis and tumor progression. Biochim Biophys Acta1858, 633-640, doi:10.1016/j.bbabio.2016.12.008 (2017).
36 Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys462, 245-253, doi:10.1016/j.abb.2007.03.034 (2007).
37 Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell17, 98-109, doi:10.1016/j.devcel.2009.06.014 (2009).
38 Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell17, 87-97, doi:10.1016/j.devcel.2009.06.013 (2009).
39 Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun6, 7527, doi:10.1038/ncomms8527 (2015).
40 Hara, H. et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol305, L737-746, doi:10.1152/ajplung.00146.2013 (2013).
41 Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J35, 724-742, doi:10.15252/embj.201592862 (2016).
42 Korolchuk, V. I., Miwa, S., Carroll, B. & von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine21, 7-13, doi:10.1016/j.ebiom.2017.03.020 (2017).
43 Dalle Pezze, P. et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol10, e1003728, doi:10.1371/journal.pcbi.1003728 (2014).
44 Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature529, 37-42, doi:10.1038/nature16187 (2016).
45 Tanaka, H. et al. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Rep18, 2148-2161, doi:10.1016/j.celrep.2017.02.021 (2017).
46 Nishimura, K. et al. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep10, 1310-1323, doi:10.1016/j.celrep.2015.01.055 (2015).
47 Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature498, 109-112, doi:10.1038/nature12154 (2013).
48 Hutter, E. et al. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J380, 919-928, doi:10.1042/bj20040095 (2004).
49 Quijano, C. et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle11, 1383-1392, doi:10.4161/cc.19800 (2012).
50 Takebayashi, S. et al. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells. Aging Cell14, 689-697, doi:10.1111/acel.12351 (2015).
51 Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature501, 421-425, doi:10.1038/nature12437 (2013).
52 Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov5, 493-506, doi:10.1038/nrd2060 (2006).
53 Wu, Y. et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals19, 163-174, doi:10.1159/000328516 (2011).
54 Ishiguro, S. et al. Low Temperature-Responsive Changes in the Anther Transcriptome’s Repeat Sequences Are Indicative of Stress Sensitivity and Pollen Sterility in Rice Strains. Plant Physiology164, 671-682 (2014).
55 Tatebayashi, R. et al. Gene-expression profile and postpartum transition of bovine endometrial side population cells. Biol Reprod, doi:10.1093/biolre/ioab (2021).
56 Kimura, K. et al. Successful superovulation of cattle by a single administration of FSH in aluminum hydroxide gel. Theriogenology68, 633-639 (2007).
57 Stringfellow, D. A. & Seidel, S. M. Manual of the International Embryo Transfer Society: a procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures. International Embryo Transfer Society3rd ed., Savoy, IL (1998).
58 Dochi, O. et al. Direct transfer of bovine embryos frozen-thawed in the presence of propylene glycol or ethylene glycol under on-farm conditions in an integrated embryo transfer program. Theriogenology49, 1051-1058 (1998).