Al Agely A., Sylvia D. M., & Ma LQ. (2005). Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Journal of Environmental Quality, 34, 2181–2186. https://doi.org/10.2134/jeq2004.0411
Alford E. R., Pilon-Smits E. A.H., & Paschke M.W. (2010). Metallophytes – a view from the rhizosphere. Plant and Soil, 337, 337–350. https://doi.org/10.1007/s11104-010-0482-3
Antosiewicz D. M. , Escudĕ-Duran C., Wierzbowska E., & Skłodowska A. (2008). Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated Soil. Water Air and Soil Pollution, 193, 197–210. https://doi.org/10.1007/s11270-008-9683-2
Arthur E. L., Rice P. J., Rice P. J., Anderson T. A., Baladi S. M., Henderson K. L. D., & Coats J. R. (2005). Phytoremediation – an overview. Critical reviews in plant sciences, 24, 109–122. https://doi.org/10.1080.07352680590952496
Audet P. (2013). Examining the ecological paradox of the ‘mycorrhizal- metal-hyperaccumulators’. Archives of Agronomy and Soil Science, 59, 549–558. https://doi.org/10.1080/03650340.2012.658378
Aguilera P., Cornejo P., Borie F., Barea J. M., von Baer E., & Oehl F. (2014). Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems and Environment, 186, 178–184. https://doi.org/10.1016/j.agee.2014.01.029
Baker A. J. M. (1981). Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.
Bills R. J., & Morton J. B. (2015). A combination of morphology and 28S rRNA gene sequences provide grouping and ranking criteria to merge eight into three Ambispora species (Ambisporaceae, Glomeromycota). Mycorrhiza, 25, 485–498. https://doi.org/10.1007/s00572-015-0626-7
Clark P. B. (1997). Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant and Soil, 192, 15–22.
Cornejo P., Pérez-Tienda J., Meier S., Valderas A., Borie F., Azcón-Aguilar C., & Ferrol N. (2013). Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology & Biochemistry, 57, 925–928. http://doi.org/10.1016/j.soilbio.2012.10.031
da Silva G. A., Trufem S. F. B., Júnior O. J. S., & Maia L. C. (2005). Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza, 15, 47–53. https://doi.org/10.1007/s00572-004-0293-6
Del Val C., Barea J. M., & Azcón-Aguilar C. (1999). Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology, 65, 718–723.
Dietterich L. H.,Gonneau E., & Casper B. B. (2017). Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecological Applications, 27, 1862–1875. https://doi.org/10.1002/eap.1573
Jankong P., Visoottiviseth P., & Khokiattiwong S. (2007). Enhanced phytoremediation of arsenic contaminated land. Chemosphere, 68, 1906–1912. https://doi.org/10.1016/j.chemosphere.2007.02.061
Khan A. G., Kuek C., Chaudhry T. M., Khoo C. S., & Hayes W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207. https://doi.org/10.1016/S0045-6535(99)00412-9
Koske R. E. & Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92, 486–505.
Leyval C., Turnau K., & Haselwandter K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and
function: physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.
Liu W., Shu W. S., & Lan C. Y. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49, 29–32. https://doi.org/10.1360/03wc0245
Liu Y., Christie P., Zhang J., & Li X. (2009). Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environmenal and Experimental Botany, 66, 435–441. http://doi.org/ 10.1016/j.envexpbot.2009.03.002
Liu Y., Zhu Y. G., Chen B.D., Christie P., & Li X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15, 187–192. https://doi.org/10.1007/s00572-004-0320-7
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L. & Swan J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhial fungi. New Phytologist, 115, 495–501.
McGrath S.P., & Zhao F. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282. https://doi.org/10.1016/S0958-1669(03)00060-0
Miransari M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653. https://doi.org/10.1016/j.biotechadv.2011.04.006
Orłowska E., Ryszka P., Jurkiewicz A., & Turnau K. (2005). Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma, 129, 92–98. https://doi.org/10.1016/j.geoderma.2004.12.036
Orłowska E., Przybyłowicz W., Orlowski D., Mongwaketsi N. P., Turnau K. & Mesjasz-Przybyłowicz J. (2013). Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environmental Pollution, 175, 100–109. http://doi.org/10.1016/j.envpol.2012.12.028
Park H., Lee E., Ka K., & Eom A. (2016). Community Structures of Arbuscular Mycorrhizal Fungi in Soils and Plant Roots Inhabiting Abandoned Mines of Korea. Mycobiology, 44(4), 277–282. https://doi.org/10.5941/MYCO.2016.44.4.277
Pawlowska T. E., Błaszkowski J., & Rühling Å. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505.
Perrier N., Amir H., & Colin F. (2006). Occurrence of mycorrhizal symbioses in the metal-rich
lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza, 16, 449–458. https://doi.org/10.1007/s00572-006-0057-6
Pongrac P., Vogel-Mikuš K., Kump P., Nečemer M., Tolrà R., Poschenriederet C., Barceló J., & Regvar M. (2007). Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 69, 1602–1609. https://doi.org/10.1016/j.chemosphere.2007.05.046
Rajkumar M., Sandhya S., Prasad M. N. V., & Freitas H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574. https://doi.org/ 10.1016/j.biotechadv.2012.04.011
Redecker D., Schüßler A., Stockinger H., Stürmer S. L., Morton J. B., & Walker C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515–531. https://doi.org/10.1007/s00572-013-0486-y
Regvar M., Vogel K., Irgel N., Wraber T., Hildebrandt U., Wilde P., & Bothe H. (2003). Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 160, 615–626. https://doi.org/10.1078/0176-1617-00988
Sánchez-Castro I., Gianinazzi-Pearson V., Cleyet-Marel J. C., Baudoin E., & van Tuinen D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of the Total Environment, 598, 121–128. http://doi.org/10.1016/j.scitotenv.2017.04.084
Shetty K. G., Banks M. K., Hetrick B. A., & Schwab A. P. (1994). Biological characterization of a southeast Kansas mining site. Water, Air and Soil Pollution, 78, 169–177.
Smith S. E., & Read D. J. (1997). Mycorrhizal symbiosis. 2nd ed. Academic Press, San Diego, London.
Sun Y., Zhang X., Wu Z., Hu Y., Wu S., & Chen B. (2016). The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences, 39, 110–118. http://doi.org/10.1016/j.jes.2015.10.005
Tommerup I. C. & Kidby D. K. (1979). Preservation of spores of vesicular arbuscular endophytes by L-drying. Applied
and Environmental Microbiology, 37, 831–835.
Turnau K., Ryszka P., Gianinazzi-Pearson V., & van Tuinen D. (2001). Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza, 10, 169–174.
Turnau K., & Mesjasz-Przybylowicz J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190. http://doi.org/10.1007/s00572-002-0213-6
van der Heyde M., Ohsowski B., Abbott L. K., & Hart M. (2017). Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza, 27, 431–440. http://doi.org/10.1007/s00572-016-0759-3
Vieira C. K., Marascalchi M. N., Rodrigues A. V., de Armas R. D., & Stürmer S. L. (2018). Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems. Journal of Environmental Sciences, 67, 330–343. http://doi.org/10.1016/j.jes.2017.08.019
Vogel-Mikuš K., Drobne D., & Regvar M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242. http://doi.org/10.1016/j.envpol.2004.06.021
Vogel-Mikuš K., Pongrac P., Kump P., Nečemer M., & Regvar M. (2006). Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139, 362–371. http://doi.org/10.1016/j.envpol.2005.05.005
Wang L., Wang G., Ma F., & You Y. (2021). Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review. Chinese Journal of Biotechnology. 37: 3604–3621. http://doi.org/10.13345/j.cjb.210305
Wei Y., Hou H., Li J., ShangGuan Y., Xu Y., Zhang J., Zhao L., & Wang W. (2014). Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator - Phytolacca americana, in Mn mining area. Applied Soil Ecology, 82, 11–17. http://doi.org/10.1016/j.apsoil.2014.05.005
Whitfield L., Richards A. J., & Rimmer D. L. (2004). Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza, 14, 55–62.
Wong M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. https://doi.org/10.1016/S0045-6535(02)00232-1
Wu C., Liao B., Wang S., Zhang J. & Li J. (2010). Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis ). International Journal of Phytoremediation, 12, 574–585. http://doi.org/10.1080/15226510903353195
Wu F. Y., Ye Z. H., Wu S. C., & Wong M. H. (2007). Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta, 226, 1363–1378. http://doi.org/10.1007/s00425-007-0575-2
Wu F. Y., Ye Z. H., & Wong M. H. (2009). Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere, 76, 1258–1264. http://doi.org/10.1016/j.chemosphere.2009.05.020
Yang W., Li P., Rensing C., Ni W., & Xing S. (2019). Biomass, activity and structure of rhizosphere soil microbial community under different metallophytes in a mining site. Plant and Soil, 434, 245–262. https://doi.org/10.1007/s11104-017-3546-9
Zarei M., Saleh-Rastin N., Jouzani G. S., Savaghebi G. & Buscot F. (2008). Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 44, 381–391. https://doi.org/10.1016/j.ejsobi.2008.06.004
Zarei M., Hempel S., Wubet T., Schäfer T., Savaghebi G., Jouzani G. S., Nekouei M. K. & Buscotet F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765. https://doi.org/10.1016/j.envpol.2010.04.017
Rashid A., Ayub N., AHMsad T., Gul J., & Khan K. G. (2009). Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environmental Geochemistry and Health, 31, 91–98. https://doi.org/10.1007/s10653-008-9159-8
Zhuang P., Yang Q.W., Wang H. B., & Shu W.S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water Air and Soil Pollution, 184, 235–242. https://doi.org/10.1007/s11270-007-9412-2
Zhong W., Li J., Chen Y., Shu W., & Liao B. (2012). A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Journal of Environmental Monitoring, 14, 2497–2504. https://doi.org/10.1039/c2em30333g