[1] P. Solvents and A. Alcohols, “Solubility of Nonelectrolytes in Polar Solvents 11: Solubility of Aliphatic Alcohols in Water,” no. c.
[2] P. Gramatica and A. Sangion, “A Historical Excursus on the Statistical Validation Parameters for QSAR Models: A Clarification Concerning Metrics and Terminology,” J. Chem. Inf. Model., vol. 56, no. 6, pp. 1127–1131, 2016.
[3] D. A. Winkler, “The role of quantitative structure--activity relationships (QSAR) in biomolecular discovery.,” Brief. Bioinform., vol. 3, no. 1, pp. 73–86, 2002.
[4] A. M. Kauppi, C. D. Andersson, H. A. Norberg, C. Sundin, A. Linusson, and M. Elofsson, “Inhibitors of type III secretion in Yersinia: Design, synthesis and multivariate QSAR of 2-arylsulfonylamino-benzanilides,” Bioorganic Med. Chem., vol. 15, no. 22, pp. 6994–7011, 2007.
[5] K. Roy, Advances in QSAR Modeling: Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Sciences, vol. 24, no. May 2017. 2017.
[6] M. Javaid and J. Cao, “Computing topological indices of probabilistic neural network,” Neural Comput. Appl., vol. 30, no. 12, pp. 3869–3876, 2018.
[7] B. Ren, “Novel atomic-level-based AI topological descriptors: Application to QSPR/QSAR modeling,” J. Chem. Inf. Comput. Sci., vol. 42, no. 4, pp. 858–868, 2002.
[8] Moreau G, Broto P (1980) Nouv J Chim 4:757–764
[9] D. H. Rouvray, “The modeling of chemical phenomena using topological indices,” J. Comput. Chem., vol. 8, no. 4, pp. 470–480, 1987.
[10] S. Matsutani, “The physical meaning,” vol. 26, no. 1, pp. 5133–5143, 1993.
[11] M. Randić, “On molecular branching,” Acta Chim. Slov., vol. 44, no. 1, pp. 57–77, 1997.
[12] I. . Nowell, “Molecular connectivity in structure-activity analysis,” Endeavour, vol. 10, no. 4, pp. 216–217, 1986.
[13] M. Chastrettep and D. Cretin, “Structure-property relationships-determination of the vapor pressure of hydrocarbons and oxygenated compounds using multifunctional autocorrelation method (MAM),” SAR QSAR Environ. Res., vol. 3, no. 2, pp. 131–149, 1995.
[14] Chastrette M, Tiyal F, Peyraud JF . C R Acad Sci Paris Ser II 310:514–515,1990.
[15] Zakarya D, Tiyal F, Chastrette M. J Phys Org 6:574–582,1993.
[16] M. Nohair, D. Zakarya, and A. Berrada, “Autocorrelation method adapted to generate new atomic environments: Application for the prediction of 13-C chemical shifts of alkanes,” J. Chem. Inf. Comput. Sci., vol. 42, no. 3, pp. 586–591, 2002.
[17] L. H. Hall and L. B. Kier, “The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling,” vol. 2, pp. 367–422, 2007.
[18] D. Amić, S. C. Basak, B. Lučić, S. Nikolić, and N. Trinajstić, “Structure-water solubility modeling of aliphatic alcohols using the weighted path numbers,” SAR QSAR Environ. Res., vol. 13, no. 2, pp. 281–295, 2002.
[19] D. Weininger, “J. Chem. Inj Comput.,” J. Chem. Inf. Comput. Sci., vol. 28, pp. 31–36, 1988.
[20] Rumelhart DE, Hinton GE, Williams RJ, 323:533–536,1986.
[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” pp. 1–18, 2012.
[22] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[23] S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, p. 34, 2017.
[24] Z. Zhang, “Variable selection with stepwise and best subset approaches,” Ann. Transl. Med., vol. 4, no. 7, pp. 1–6, 2016.
[25] J. Lv, Y. Liu, Z. Zhang, and J. Dai, “Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils,” J. Hazard. Mater., vol. 261, pp. 387–397, 2013.
[26] M. Templ, A. Kowarik, and P. Filzmoser, “Iterative stepwise regression imputation using standard and robust methods,” Comput. Stat. Data Anal., vol. 55, no. 10, pp. 2793–2806, 2011.
[27] “As is well known , a fundamental difficulty in statistical analysis is the choice of an appropriate model , estimating and determining the order or dimension of a model . This is a common problem when a statistical model contains many parameters . The mai,” vol. 52, no. 3, pp. 345–370, 1987.
[28] H. Akalke, “ANew Look at the Statistical Model Identification,” vol. 19, pp. 716–723, 1974.
[29] T. Ingram and D. L. Mahler, “SURFACE : detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion,” pp. 416–425, 2013.
[30] L. Dirick, G. Claeskens, and B. Baesens, “An Akaike information criterion for multiple event mixture cure models,” pp. 1–28, 2014.