1. Faul M, Coronado V (2015) Epidemiology of traumatic brain injury. Handbook of clinical neurology 127: 3-13
2. Kaur P, Sharma S (2018) Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr Neuropharmacol 16: 1224-1238. DOI 10.2174/1570159x15666170613083606
3. Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, Nzau M, Fraser DD, Bani-Yaghoub M (2018) Traumatic brain injury: classification, models, and markers. Biochem Cell Biol 96: 391-406. DOI 10.1139/bcb-2016-0160
4. Callahan CD, Hinkebein JH (2002) Assessment of anosmia after traumatic brain injury: performance characteristics of the University of Pennsylvania Smell Identification Test. The Journal of head trauma rehabilitation 17: 251-256
5. Pavlovic D, Pekic S, Stojanovic M, Popovic V (2019) Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 22: 270-282. DOI 10.1007/s11102-019-00957-9
6. Steuer E, Schaefer ML, Belluscio L (2014) Using the olfactory system as an in vivo model to study traumatic brain injury and repair. J Neurotrauma 31: 1277-1291. DOI 10.1089/neu.2013.3296
7. Ng SY, Lee AYW (2019) Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 13: 528. DOI 10.3389/fncel.2019.00528
8. Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, Walker CT, Viterise T, Hyrien O, Iliff JJ, et al. (2014) The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma 31: 1211-1224. DOI 10.1089/neu.2013.3255
9. Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30: 80-89. DOI 10.1038/sj.npp.1300518
10. Fullard ME, Morley JF, Duda JE (2017) Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neuroscience bulletin 33: 515-525
11. Alosco ML, Jarnagin J, Tripodis Y, Platt M, Martin B, Chaisson CE, Baugh CM, Fritts NG, Cantu RC, Stern RA (2017) Olfactory function and associated clinical correlates in former national football league players. Journal of neurotrauma 34: 772-780
12. Broussard JI, Acion L, De Jesús-Cortés H, Yin T, Britt JK, Salas R, Costa-Mattioli M, Robertson C, Pieper AA, Arciniegas DB (2018) Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice. Brain injury 32: 113-122
13. Creeley CE, Wozniak DF, Bayly PV, Olney JW, Lewis LM (2004) Multiple episodes of mild traumatic brain injury result in impaired cognitive performance in mice. Academic Emergency Medicine 11: 809-819
14. Hayes JP, Logue MW, Sadeh N, Spielberg JM, Verfaellie M, Hayes SM, Reagan A, Salat DH, Wolf EJ, McGlinchey RE, et al. (2017) Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer’s disease. Brain 140: 813-825. DOI 10.1093/brain/aww344
15. Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, Davies P, Mullan M, Stewart W, Crawford F (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75: 241-254. DOI 10.1002/ana.24064
16. Xu L, Nguyen JV, Lehar M, Menon A, Rha E, Arena J, Ryu J, Marsh-Armstrong N, Marmarou CR, Koliatsos VE (2016) Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Exp Neurol 275 Pt 3: 436-449. DOI 10.1016/j.expneurol.2014.11.004
17. Raji CA, Tarzwell R, Pavel D, Schneider H, Uszler M, Thornton J, van Lierop M, Cohen P, Amen DG, Henderson T (2014) Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One 9: e91088. DOI 10.1371/journal.pone.0091088
18. Lehmkuhl AM, Dirr ER, Fleming SM (2014) Olfactory assays for mouse models of neurodegenerative disease. J Vis Exp: e51804. DOI 10.3791/51804
19. Yang M, Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci Chapter 8: Unit 8.24. DOI 10.1002/0471142301.ns0824s48
20. Kum J, Kim JW, Braubach O, Ha JG, Cho HJ, Kim CH, Han HB, Choi JH, Yoon JH (2019) Neural Dynamics of Olfactory Perception: Low- and High-Frequency Modulations of Local Field Potential Spectra in Mice Revealed by an Oddball Stimulus. Front Neurosci 13: 478. DOI 10.3389/fnins.2019.00478
21. Mychasiuk R, Farran A, Angoa-Perez M, Briggs D, Kuhn D, Esser MJ (2014) A novel model of mild traumatic brain injury for juvenile rats. J Vis Exp. DOI 10.3791/51820
22. Seo JS, Lee S, Shin JY, Hwang YJ, Cho H, Yoo SK, Kim Y, Lim S, Kim YK, Hwang EM, et al. (2017) Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp Mol Med 49: e333. DOI 10.1038/emm.2017.56
23. Paxinos G, and Charles Watson. (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier
24. Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104: 1195-1210. DOI 10.1152/jn.00106.2010
25. Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. Neurodegenerative diseases: 383-400
26. Kocsis B, Pittman-Polletta BR, Roy A (2018) Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why. Brain Struct Funct 223: 11-16. DOI 10.1007/s00429-017-1587-8
27. Lockmann ALV, Tort ABL (2018) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct 223: 1-3. DOI 10.1007/s00429-017-1573-1
28. Lockmann AL, Laplagne DA, Leão RN, Tort AB (2016) A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations. J Neurosci 36: 5338-5352. DOI 10.1523/jneurosci.3452-15.2016
29. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences 9: 474-480
30. Lisman J, Buzsáki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34: 974-980. DOI 10.1093/schbul/sbn060
31. Antonakakis M, Dimitriadis SI, Zervakis M, Micheloyannis S, Rezaie R, Babajani-Feremi A, Zouridakis G, Papanicolaou AC (2016) Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. International Journal of Psychophysiology 102: 1-11
32. Biskamp J, Bartos M, Sauer J-F (2017) Organization of prefrontal network activity by respiration-related oscillations. Scientific reports 7: 1-11
33. Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Müller C, Ponsel S, Yanovsky Y, Brankačk J, Tort ABL, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci U S A 114: 4519-4524. DOI 10.1073/pnas.1617249114
34. Baba T, Takeda A, Kikuchi A, Nishio Y, Hosokai Y, Hirayama K, Hasegawa T, Sugeno N, Suzuki K, Mori E (2011) Association of olfactory dysfunction and brain. Metabolism in Parkinson's disease. Movement Disorders 26: 621-628
35. Vanderwolf CH, Zibrowski EM (2001) Pyriform cortex beta-waves: odor-specific sensitization following repeated olfactory stimulation. Brain Res 892: 301-308. DOI 10.1016/s0006-8993(00)03263-7
36. Zibrowski EM, Hoh TE, Vanderwolf CH (1998) Fast wave activity in the rat rhinencephalon: elicitation by the odors of phytochemicals, organic solvents, and a rodent predator. Brain Res 800: 207-215. DOI 10.1016/s0006-8993(98)00494-6
37. Vanderwolf CH, Zibrowski EM, Wakarchuk D (2002) The ability of various chemicals to elicit olfactory beta-waves in the pyriform cortex of meadow voles (Microtus pennsylvanicus) and laboratory rats (Rattus norvegicus). Brain Res 924: 151-158. DOI 10.1016/s0006-8993(01)03225-5
38. DeKosky ST, Asken BM (2017) Injury cascades in TBI-related neurodegeneration. Brain injury 31: 1177-1182