1. Bray, F., J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Buerger, H., E.C. Mommers, R. Littmann, et al., Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol, 2001. 194(2): p. 165-170.
3. Rakha, E.A., M.E. El-Sayed, S. Menon, et al., Histologic grading is an independent prognostic factor in invasive lobular carcinoma of the breast. Breast Cancer Res Treat, 2008. 111(1): p. 121-127.
4. Rakha, E.A., M.E. El-Sayed, A.H. Lee, et al., Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol, 2008. 26(19): p. 3153-3158.
5. Elston, C.W. and I.O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 1991. 19(5): p. 403-410.
6. Giuliano, A.E., J.L. Connolly, S.B. Edge, et al., Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin, 2017. 67(4): p. 290-303.
7. Rakha, E.A., J.S. Reis-Filho, F. Baehner, et al., Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res, 2010. 12(4): p. 207.
8. Elston, C.W. and I.O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403-410. Histopathology, 2002. 41(3A): p. 151-152, discussion 152-153.
9. Elston, C.W. and I.O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 2002. 41(3A): p. 154-161.
10. Roylance, R., P. Gorman, W. Harris, et al., Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res, 1999. 59(7): p. 1433-1436.
11. Buerger, H., F. Otterbach, R. Simon, et al., Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol, 1999. 189(4): p. 521-526.
12. Ma, X.J., R. Salunga, J.T. Tuggle, et al., Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5974-5979.
13. Ivshina, A.V., J. George, O. Senko, et al., Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res, 2006. 66(21): p. 10292-10301.
14. Ellsworth, R.E., J.A. Hooke, B. Love, et al., Correlation of levels and patterns of genomic instability with histological grading of invasive breast tumors. Breast Cancer Res Treat, 2008. 107(2): p. 259-265.
15. Fanshawe, T.R., A.G. Lynch, I.O. Ellis, et al., Assessing agreement between multiple raters with missing rating information, applied to breast cancer tumour grading. PLoS One, 2008. 3(8): p. e2925.
16. Sotiriou, C., P. Wirapati, S. Loi, et al., Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst, 2006. 98(4): p. 262-272.
17. Harvey, J.M., N.H. de Klerk, and G.F. Sterrett, Histological grading in breast cancer: interobserver agreement, and relation to other prognostic factors including ploidy. Pathology, 1992. 24(2): p. 63-68.
18. Robbins, P., S. Pinder, N. de Klerk, et al., Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol, 1995. 26(8): p. 873-879.
19. Frierson, H.F., Jr., R.A. Wolber, K.W. Berean, et al., Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am J Clin Pathol, 1995. 103(2): p. 195-198.
20. Dalton, L.W., S.E. Pinder, C.E. Elston, et al., Histologic grading of breast cancer: linkage of patient outcome with level of pathologist agreement. Mod Pathol, 2000. 13(7): p. 730-735.
21. Italian Network for Quality Assurance of Tumour Biomarkers, G., Quality control for histological grading in breast cancer: an Italian experience. Pathologica, 2005. 97(1): p. 1-6.
22. Ellis, I.O., D. Coleman, C. Wells, et al., Impact of a national external quality assessment scheme for breast pathology in the UK. J Clin Pathol, 2006. 59(2): p. 138-145.
23. Cava, C., G. Bertoli, M. Ripamonti, et al., Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One, 2014. 9(5): p. e97681.
24. Aswad, L., S.P. Yenamandra, G.S. Ow, et al., Genome and transcriptome delineation of two major oncogenic pathways governing invasive ductal breast cancer development. Oncotarget, 2015. 6(34): p. 36652-36674.
25. Wang, M., D. Klevebring, J. Lindberg, et al., Determining breast cancer histological grade from RNA-sequencing data. Breast Cancer Res, 2016. 18(1): p. 48.
26. Leek, J.T., R.B. Scharpf, H.C. Bravo, et al., Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet, 2010. 11(10): p. 733-739.
27. Patil, P., P.O. Bachant-Winner, B. Haibe-Kains, et al., Test set bias affects reproducibility of gene signatures. Bioinformatics, 2015. 31(14): p. 2318-2323.
28. Qi, L., L. Chen, Y. Li, et al., Critical limitations of prognostic signatures based on risk scores summarized from gene expression levels: a case study for resected stage I non-small-cell lung cancer. Brief Bioinform, 2016. 17(2): p. 233-242.
29. Guan, Q., R. Chen, H. Yan, et al., Differential expression analysis for individual cancer samples based on robust within-sample relative gene expression orderings across multiple profiling platforms. Oncotarget, 2016. 7(42): p. 68909-68920.
30. Cheng, J., Y. Guo, Q. Gao, et al., Circumvent the uncertainty in the applications of transcriptional signatures to tumor tissues sampled from different tumor sites. Oncotarget, 2017. 8(18): p. 30265-30275.
31. Chen, R., Q. Guan, J. Cheng, et al., Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples. Oncotarget, 2017. 8(4): p. 6652-6662.
32. Liu, H., Y. Li, J. He, et al., Robust transcriptional signatures for low-input RNA samples based on relative expression orderings. BMC Genomics, 2017. 18(1): p. 913.
33. Eddy, J.A., J. Sung, D. Geman, et al., Relative expression analysis for molecular cancer diagnosis and prognosis. Technol Cancer Res Treat, 2010. 9(2): p. 149-159.
34. Cai, H., X. Li, J. Li, et al., Tamoxifen therapy benefit predictive signature coupled with prognostic signature of post-operative recurrent risk for early stage ER+ breast cancer. Oncotarget, 2015. 6(42): p. 44593-44608.
35. Li, X., H. Cai, W. Zheng, et al., An individualized prognostic signature for gastric cancer patients treated with 5-Fluorouracil-based chemotherapy and distinct multi-omics characteristics of prognostic groups. Oncotarget, 2016. 7(8): p. 8743-8755.
36. Ao, L., X. Song, X. Li, et al., An individualized prognostic signature and multiomics distinction for early stage hepatocellular carcinoma patients with surgical resection. Oncotarget, 2016. 7(17): p. 24097-24110.
37. Qi, L., T. Li, G. Shi, et al., An individualized gene expression signature for prediction of lung adenocarcinoma metastases. Mol Oncol, 2017. 11(11): p. 1630-1645.
38. Zhou, X., T. Shi, B. Li, et al., Genes dysregulated to different extent or oppositely in estrogen receptor-positive and estrogen receptor-negative breast cancers. PLoS One, 2013. 8(7): p. e70017.
39. Chen, S.T., H.W. Lai, H.S. Tseng, et al., Correlation of histologic grade with other clinicopathological parameters, intrinsic subtype, and patients' clinical outcome in Taiwanese women. Jpn J Clin Oncol, 2011. 41(12): p. 1327-1335.
40. Metzger-Filho, O., A. Catteau, S. Michiels, et al., Genomic Grade Index (GGI): feasibility in routine practice and impact on treatment decisions in early breast cancer. PLoS One, 2013. 8(8): p. e66848.
41. Ping, Z., Y. Xia, T. Shen, et al., A microscopic landscape of the invasive breast cancer genome. Sci Rep, 2016. 6: p. 27545.
42. Irizarry, R.A., B. Hobbs, F. Collin, et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003. 4(2): p. 249-264.
43. Curtis, C., S.P. Shah, S.F. Chin, et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012. 486(7403): p. 346-352.
44. Trapnell, C., B.A. Williams, G. Pertea, et al., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010. 28(5): p. 511-515.
45. Bahn, A.K., Application of binomial distribution to medicine: comparison of one sample proportion to an expected proportion (for small samples). Evaluation of a new treatment. Evaluation of a risk factor. J Am Med Womens Assoc, 1969. 24(12): p. 957-966.
46. Y, B. and H. Y, Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc, 1995. 57(1): p. 289–300.
47. T, S. and S. E, A class of rank test procedures for censored survival data. Biometrika, 1982. 69(3): p. 553–566.
48. Boschini, C., K.K. Andersen, and T.H. Scheike, Excess risk estimation for matched cohort survival data. Stat Methods Med Res, 2018: p. 962280218804269.
49. Harrell, F.E., Jr., K.L. Lee, R.M. Califf, et al., Regression modelling strategies for improved prognostic prediction. Stat Med, 1984. 3(2): p. 143-152.
50. Pencina, M.J., R.B. D'Agostino, Sr., and L. Song, Quantifying discrimination of Framingham risk functions with different survival C statistics. Stat Med, 2012. 31(15): p. 1543-1553.
51. Wang, J., X. Zhou, J. Zhu, et al., GO-function: deriving biologically relevant functions from statistically significant functions. Brief Bioinform, 2012. 13(2): p. 216-227.