[1] C. H. Cho, C. O. Aspetti, J. Park and R. Agarwal. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence [J]. Nature Photonics, 7, 285-289. (2013)
[2] K. Y. Jeong, M. S. Hwang, J. Kim, J. S. Park, J. M. Lee, H. G. Park. Recent progress in nanolaser technology [J]. Advanced Materials, 32, 2001996. (2020)
[3] R. M. Ma, R. F. Oulton. Applications of nanolasers [J]. Nature Nanotechnology, 14, 12-22. (2019)
[5] Zhi Guo, Yan Wan, et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 356, 59-62. (2017)
[6] C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam and R. Agarwal. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons [J]. Nat. Mater., 10, 669-675. (2011)
[7] X. Y. Huang, H. B. Li, C. F. Zhang, S. J. Tan, Z. Z. Chen, L. Chen, Z. D. Lu, X. Y. Wang and M. Xiao. Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals [J]. Nat. Commun., 10, 1163. (2019)
[8] A. F. Bravo, D. Wang, E. S. Barnard, A. Teitelboim, C. Tajon, J. Guan, G. C. Schatz, B. E. Cohen, E. M. Chan, P. J. Schuck, T. W. Odom. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons [J]. Nat. Mater., 18, 1172-1176. (2019)
[9] Yang, X.; Ni, P.-N.; Jing, P.-T.; Zhang, L.-G.; Ma, R.-M.; Shan, C.-X.; Shen, D.-Z.; Genevet, P. Room Temperature Electrically Driven Ultraviolet Plasmonic Lasers. Adv. Opt. Mater., 2019, 7, 1801681.
[10] Y. Pan, L. Huang, W. Sun, D. L. Gao, L. Li*, Invisibility Cloak Technology of Anti-Infrared Detection Materials Prepared Using CoGaZnSe Multilayer Nanofilms, ACS Appl. Mater. Inter., 2021, 13, 33, 40145–40154.
[11] Y. Pan, L. Wang, X. Su, D. Gao, P. Cheng, Nanolasers Incorporating CoxGa0.6–xZnSe0.4 Nanoparticle Arrays with Wavelength Tunability at Room Temperature, ACS Appl. Mater. Inter., 2021, 13, 5, 6975–6986.
[12] Y. Pan, L. Wang, Y. Zhang, X. Su, D. Gao, R. Chen, L. Huang, W. Sun, Y. Zhao, D. Gao, Multi-Wavelength Laser Emission by Hot-Carriers Transfers in Perovskite-Graphene-Chalcogenide Quantum Dots, Adv. Opt. Mater., 2022, 2201044.
[13] D. Xing, C. Lin, P. Won, R. Xiang, T. Chen, A. S. A. Kamal, Y. Lee, Y. Ho, S. Maruyama, S. H. Ko, C. Chen, J. Delaunay. Metallic nanowire coupled CsPbBr3 quantum dots plasmonic nanolaser [J]. Adv. Func. Mater., 31, 2102375. (2021)
[14] A. P. Schlaus, M. S. Spencer, X. Y. Zhu, Light−Matter Interaction and Lasing in Lead Halide Perovskites, Acc. Chem. Res. 2019, 52, 2950−2959.
[15] Y. Liu, Q. Chen, D. A. Cullen, Efficient Hot Electron Transfer from Small Au Nanoparticles, Nano Lett., 2020, 20, 4322−4329.
[16] Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon Lasers at Deep Subwavelength Scale. Nature 2009, 461, 629−632.
[17] Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J. H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y. Thresholdless Nanoscale Coaxial Lasers. Nature 2012, 482, 204−207.
[18] Wang, S.; Chen, H.-Z.; Ma, R.-M. High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10%. Nano Lett. 2018, 18, 7942−7948.
[19] Yang, X.; Ni, P.-N.; Jing, P.-T.; Zhang, L.-G.; Ma, R.-M.; Shan, C.-X.; Shen, D.-Z.; Genevet, P. Room Temperature Electrically Driven Ultraviolet Plasmonic Lasers. Adv. Opt. Mater. 2019, 7, 1801681.
[20] Y. Wang, J. Yu, Y. F. Mao, J. Chen, S. Wang, H. Z. Chen, Y. Zhang, S. Y. Wang, X. Chen, T. Li, L. Zhou, R. M. Ma, S. Zhu, W. Cai, J. Zhu. Stable high-performance sodium-based plasmonic devices [J]. Nature, 581, 401-405. (2020)
[21] D. Xing, C. Lin, P. Won, R. Xiang, T. Chen, A. S. A. Kamal, Y. Lee, Y. Ho, S. Maruyama, S. H. Ko, C. Chen, J. Delaunay. Metallic nanowire coupled CsPbBr3 quantum dots plasmonic nanolaser [J]. Adv. Func. Mater., 31, 2102375. (2021)
[22] G. Li, B. Zhou, Z. Hou, Y. Wei, R. Wen, T. Ji, Y. Wei, Y. Hao, Y. Cui. Transfer printing of perovskite whispering gallery mode laser cavities by thermal release tape [J]. Nanoscale Research Letters, 17, 8. (2022)
[23] Fowler, R. H. The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures. Phys. Rev. 1931, 38 (1), 45−56.
[24] Y. Liang, C. Li, Y. Huang, Q. Zhang, Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges, ACS Nano 2020, 14, 14375−14390.