(1) Lopez-Barea, J. (1995). Biomarkers in ecotoxicology. Archives of toxicology, 17: 57-79.
(2) Yancheva, V., Velcheva, I., Stoyanova, S and Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Applied Ecology and Environment Research, 14(1): 47-75.
(3) Mohamed, A. S. F. (2009). Histopathological studies on Tillapia zilli and Solea vulgaris from Lake Qarun, Egypt. World Journal of Fish and Marine Sciences, 1: 29-39.
(4) Chaudhry, A.S., and Jabeen, F. (2011). Assessing metal, protein and DNA profiles in Labeo rohita from the Indus River in Mianwali, Pakistan. Environmental Monitoring and Assessment, 174: 665-679.
(5) Shahzad, F., Taj, M. K., Abbas, F., Taj, I., Parveen, S., Achakzai, A. M., Azam, S., Hussain, A., Tareen, A. R., Mohammad, G., Samreen, Z., Sazian, B. and Bibi, L. (2019). Pesticides and our environment. International Journal of Biosciences, 14(4): 487-491.
(6) Hadian, Z., Eslamizad, S. and Yazdanpanah, H. (2019). Pesticide Residues Analysis in Iranian Fruits and Vegetables by Gas Chromatography-Mass Spectrometry. Iranian Journal of Pharmaceutical Research 18: 275.
(7) Maton, S.M., Dodo, J.D., Nesla, R.A. and Ali, A.Y. (2016). Environmental Impact of Pesticides Usage on Farmlands in Nigeria. International journal of innovative research and development 5: 311-317.
(8) Pritchard, J. B. (1993). Aquatic toxicology: past, present, and prospects. Environmental Health Perspectives, 100: 249–257.
(9) Al-Badran, A. A., Fujiwara, M. and Mora, M. A. (2019). Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE, 14(10):e0223641.
(10) Hayasaka, D., Suzuki, K., Nomura, T., Nishiyama, M., Nagai, T., Sánchez-Bayo, F. and Goka, K. (2013). Comparison of acute toxicity of two neonicotinoid insecticides, imidacloprid and clothianidin, to five cladoceran species. Journal of Pesticide Science, 38(1): 44–47.
(11) Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C. and Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74: 291-303.
(12) EXTOXNET, (1996). Extension Toxicology Network. Pesticide Information profiles: Imidacloprid. Available at http://extoxnet.orst.edu/pips/imidaclo.htm, accessed on 13 April 2022.
(13) Tomlin, C. D. S. (2000). The Pesticide Manual, twelfth ed. British Crop Protection Council, Surrey, United Kingdom.
(14) Vieira, C. E. D., Pérez, M. R., Acayaba, R. D., Raimundo, C. C. M. and Martinez, C. B. R. (2018). DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere, 195: 125-134.
(15) Radwan, M. A. and Mohamed, M. S. (2013). Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotoxicology and Environmental Safety, 95: 91-97.
(16) Shan, Y., Yan, S., Hong, X., Zha, J. and Qin, J. (2020). Effect of imidacloprid on the behavior, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea). Aquatic Toxicology, 218: 105333
(17) Jeschke, P., Nauen, R., Schindler, M. and Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agriculture and Food Chemistry 59: 2897-2908.
(18) Goulson, D. (2013). Review: an overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50: 977-987.
(19) Jeschke, P. and Nauen, R. (2008). Neonicotinoids—from zero to hero in insecticide chemistry. Pest Management Science 64: 1084-1098.
(20) Lewis, K. A., Tzilivakis, J., Warner, D. J. and Green, A (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22:1050-1064.
(21) Nnadi, J.U., Dimelu, I.N., Nwani, S.I., Madu, J.C., Atama, C.I., Attamah, G.N., Okwor, J.I. and Nwani, C.D., 2018. Biometric variations and oxidative stress responses in juvenile Clarias gariepinus exposed to Termex®. African Journal of Aquatic Science, 43(1), pp.27-34.
(22) Islam, M. A., Hossen, M. S., Sumon, K. A. and Rahman, M. M. (2019). Acute toxicity of imidacloprid on the developmental stages of Common Carp Cyprinus carpio. Toxicology and Environmental Health Sciences, 11(3): 244-251.
(23) Qadir, S. and Iqbal, F. (2016). Effect of subleathal concentrtion of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. Pakistan journal of pharmaceutical sciences, 29:2033-2038.
(24) Ogueji, E. O., Nwani, C. D., Iheanacho, S. C., Mbah, C. E., Okeke, O. C. and Yaji, A. (2018). Acute toxicity effects of ibuprofen on behaviour and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822). African Journal of Aquatic Science, 43(2): 293–303.
(25) OECD (2019). Test guideline No. 203: Fish, acute toxicity test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris. doi:10.1787/9789264069961-en
(26) Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28(1): 56-63.
(27) Jendrassik, L. and Grof, P. (1938). Estimation of total serum bilirubin level by spectrophotometrically in serum and plasma. Biochem Zeitschrift 297: 81-89.
(28) Bern, F. P. (1955). Amylase a and b. In Methods of enzymology (Ed. Clockwi and Kalpin). Academic Press New York, USA. pp. 149-158.
(29) Bier, M. (1955). [106] Lipases: RCOOR′+ H2O→ RCOOH+ R′ OH.
(30) Habig, W.H. and W.B. Jakoby (1981). Assays for differentiation of glutathione-S-transferases. Methods in Enzymology, 77: 398-405.
(31) Minamide, M., Hosoi, I. and Yanagi, S. (2000). CA19.9-producing testicular tumor: a case report, Hinyokika Kiyo, 46(1): 45-47.
(32) Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
(33) Teimouri, M., Yeganeh, S. Mianji, G.R., Najafi, M. and Mahjoub, S. (2019). The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidization of rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 45(3): 977-986.
(34) Beers, R. F. and Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195(1): 133-140.
(35) Hafeman, D.G., Sunde, R.A. and Hoekstra, W.G. (1974). Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. The Journal of nutrition, 104(5): 580-587.
(36) McCord, J. M. and Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22): 6049-6055.
(37) Wang, Y., Yang, G., Dai, D., Xu, Z., Cai, L., Wang, Q. and Yu, Y. (2017). Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environmental Science and Pollution Research, 24(5): 4528-4536.
(38) Xia, X., Xia, X., Huo, W., Dong, H., Zhang, L. and Chang, Z. (2016). Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environmental Toxicology and Pharmacology, 45: 132-139.
(39) Naiel, M.A., Shehata, A.M., Negm, S.S., Abd El‐Hack, M.E., Amer, M.S., Khafaga, A.F., Bin‐Jumah, M. and Allam, A.A. (2020). The new aspects of using some safe feed additives on alleviated imidacloprid toxicity in farmed fish: A review. Reviews in aquaculture, 12(4): 2250-2267.
(40) Qadir, S., Latif, A., Ali, M. and Iqbal, F. (2014). Effects of Imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pakistan Journal of Zoology, 46(4): 1085-1090.
(41) Topal, A., Alak, G., Ozkaraca, M., Yeltekin, A.C., Comaklı, S., Acıl, G., Kokturk, M. and Atamanalp, M., 2017. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175: 186-191.
(42) Rahman, A.N.A., Mansour, D.A., Abd El-Rahman, G.I., Elseddawy, N.M., Zaglool, A.W., Khamis, T., Mahmoud, S.F. and Mahboub, H.H. (2022). Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture, 555: 738170.
(43) Farah, A. (1991). Effect of Heavy Metal Toxicants on Liver Function and Hepatic Drug Metabolizing Enzyme System in Rabbit (Doctoral dissertation, University of the Punjab, Lahore).
(44) Ali, S.S., Qureshi, M.A., Iqbal, M.J. And Shakoori, A.R. (1992). Zinc-induced biochemical alterations in the liver of common carp, Cyprinus carpio. Punjab University Journal of Zoology, 7:1-7.
(45) Yousafzai, A. M. and Shakoori, A. R. (2011). Hepatic responses of a freshwater fish against aquatic pollution. Pakistan Journal of Zoology, 43(2): 209-221.
(46) Desai, B. and Parikh, P. (2013). Biochemical alterations on exposure of imidacloprid and curzate on fresh water fish Oreochromis mossambicus and Labeo rohita. Indian Journal of Forensic Medicine & Toxicology, 7(2): 87-91.
(47) El Euony, O.I., Elblehi, S.S., Abdel-Latif, H.M., Abdel-Daim, M.M. and El-Sayed, Y.S., 2020. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). Environmental Science and Pollution Research, 27(18): 23108-23128.
(48) Rao, V. J. (2006). Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of Tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 143(4): 492-498.
(49) Sahu, S., Debasmita, S.and Mohapatra, A. K. (2016). Impact of cadmium on some biochemical profiles of the fresh water cat fish Clarias gariepinus (burchell, 1822). The Ecoscan, 9: 257-265.
(50) Sanna, S.G., Tabassum, S., Noreen, S., Mahmood, S., Rehman, M.U., Ahmad, B., Kabir, M., Sajid, M. and Khan, M.F. (2021). Biochemical, Endocrine and Genetic Impairments in Response to Agrochemicals Intoxication in Common Carp (Cyprinus carpio). International Journal of Agriculture & Biology. doi: 10.17957/IJAB/15.1787.
(51) Samanta, P., Pal, S., Mukherjee, A.K., Senapati, T. and Ghosh, A.R. (2019). March. Effects of Glyphosate-Based Herbicide (Excel Mera 71) on Digestive Enzymes and Recovery Pattern in Teleostean Fishes. Proceedings of the Zoological Society, 72(1): 54-60.
(52) Samanta, P., Pal, S., Mukherjee, A.K., Senapati, T., Kole, D. and Ghosh, A.R. (2014). Effects of almix herbicide on profile of digestive enzymes of three freshwater teleostean fishes in rice field condition. Toxicology Reports, 1: 379-384.
(53) Samanta, P., Pal, S., Mukherjee, A. K., Senapati, T. and Ghosh, A. R. (2016). Alterations in digestive enzymes of three freshwater teleostean fishes by almix herbicide: A comparative study. Proceedings of the Zoological Society, 69(1): 61-66.
(54) Cornelius, C. E. (1991). Bile Pigments in Fishes: A Review. Veterinary Clinical Pathology, 20(4): 106–116.
(55) Ujowundu, C. O., Nnanna, C. G., Ndubuisi, E. U., Ngwu, P. C., Uzoma, C. W. and Ezeji, E. U. (2017). Glyphosate-based pesticide-induced biochemical changes in hepatic and renal tissues of Clarias gariepinus. Futo Journal Series, 3(1): 225-235.
(56) Inyang, I. R., Akparanta, O. J. and Izah, S. C. (2019). Evaluation of some blood cells and metabolites of Heterobranchus bidorsalis (hybrid) exposed to sublethal concentrations of sarosate. International Journal of Research in Environmental Science, 5(1): 17-23.
(57) Vitek, L. and Ostrou, J. D. (2009). Bilirubin chemistry and metabolism, harmful and protective aspects. Current Pharmaceutical Design, 15: 2869-2883.
(58) Kumar, V. A., Janaiah, C. and Venkateshwarlu, P. (2010). Effect of thiamethoxam alters serum biochemical parameters in Channa punctatus (Bloch). Asian Journal of Bio Science, 5(1): 106-110.
(59) Nagahama, Y. and Yamashita, M. (2008). Regulation of oocyte maturation in fish. Development, Growth & Differentiation, 50: S195–S219.
(60) Azcoitia, I., Barreto, G.E. and Garcia-Segura, L.M. (2019). Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Frontiers in Neuroendocrinology, 55: 100787.
(61) Manolagas, S. C. and Kousteni, S. (2001). Perspective: Nonreproductive sites of action of reproductive hormones. Endocrinology, 142(6): 2200–2204.
(62) Bouman, A., Heineman, M. J. and Faas, M. M. (2005). Sex hormones and the immune response in humans. Human Reproduction Update, 111(4): 411–423.
(63) Jin, J., Kurobe, T., Ramírez-Duarte, W. F., Bolotaolo, M. B., Lam, C. H., Pandey, P. K., … Teh, S. J. (2018). Sub-lethal effects of herbicides penoxsulam, imazamox, fluridone and glyphosate on Delta Smelt (Hypomesus transpacificus). Aquatic Toxicology, 197: 79–88.
(64) Tripathy, P.S., Parhi, J. and Mandal, S.C., 2021. Steroids and Its Receptors in Fish Reproduction. In Recent updates in molecular Endocrinology and Reproductive Physiology of Fish, (pp. 53-61). Springer, Singapore.
(65) Sanderson, C. J. (1992). Interleukin-5, Eosinophils, and Disease. Blood, 79(12): 3101–3109.
(66) Chaves-Pozo, E., García-Ayala, A. and Cabas, I. (2018). Effects of sex steroids on fish leukocytes. Biology, 7: 9.
(67) Chakrabarty, S., Rajakumar, A., Raqhuveer, K., Sridevi, P., Mohanachary, A. and Prathibha Y. (2012). Endosulfan and flutamide, alone and in combination, target ovarian growth in juvenile catfish, Clarias batrachus. Comparative Biochemistry and Physiology, 155: 491–497.
(68) Agbohessi, T.P., Toko, I.I., Atchou, V., Tonato, R., Mandiki, S.N.M. and Kestemont, P. (2015). Pesticides used in cotton production affect reproductive development, endocrine regulation, liver status and offspring fitness in African catfish Clarias gariepinus (Burchell, 1822). Comparative Biochemistry and Physiology, 167: 157-172
(69) Anjali, V.R., Remya, V.S., Reshmi, S., Mahim, S.S. and Devi, C.A. (2019). Impact of Bisphenol S as an Endocrine Disruptor in a Freshwater Fish, Oreochromis mossambicus. Journal of Endocrinology and Reproduction, 23(2): 49-63.
(70) Marlatt, V.L., Leung, T.Y.G., Calbick, S., Metcalfe, C. and Kennedy, C. (2019). Sub-lethal effects of a neonicotinoid, clothianidin, on wild early life stage sockeye salmon (Oncorhynchus nerka). Aquatic Toxicology, 217: 105335.
(71) Blanton, M.L. and Specker, J.L. (2007). The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Critical Reviews in Toxicology, 37(1-2): 97-115.
(72) Lacasaña, M., López-Flores, I., Rodríguez-Barranco, M., Aguilar-Garduño, C., Blanco-Muñoz, J., Pérez-Méndez, O., Gamboa, R., Bassol, S. and Cebrian, M.E. (2010). Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicology and Applied Pharmacology, 243(1): 19-26.
(73) Yu, L., Han, Z. and Liu, C. (2015). A review on the effects of PBDEs on thyroid and reproduction systems in fish. General and Comparative Endocrinology, 219: 64-73.
(74) Campinho, M.A. (2019). Teleost metamorphosis: the role of thyroid hormone. Frontiers in Endocrinology, 10: 383.
(75) Van der Geyten, S., Mol, K.A., Pluymers, W., Kühn, E.R. and Darras, V.M. (1998). Changes in plasma T3 during fasting/refeeding in tilapia (Oreochromis niloticus) are mainly regulated through changes in hepatic type II iodothyronine deiodinase. Fish Physiology and Biochemistry, 19(2): 135-143.
(76) Power, D.M., Llewellyn, L., Faustino, M., Nowell, M.A., Björnsson, B.T., Einarsdóttir, I.E., Canario, A.V. and Sweeney, G.E. (2001). Thyroid hormones in growth and development of fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4): 447-459.
(77) Ghayyur, S., Khan, M.F., Tabassum, S., Ahmad, M.S., Sajid, M., Badshah, K., Khan, M.A., Ghayyur, S., Khan, N.A., Ahmad, B. and Qamer, S. (2021). A comparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi Journal of Biological Sciences, 28(1): 603-611.
(78) Saha, S., Chukwuka, A.V., Mukherjee, D., Patnaik, L., Nayak, S., Dhara, K., Saha, N.C. and Faggio, C., 2021. Chronic effects of Diazinon® exposures using integrated biomarker responses in freshwater walking catfish, Clarias batrachus. Applied Sciences, 11(22): 10902.
(79) Yu, L.Q., Zhao, G.F., Feng, M., Wen, W., Li, K., Zhang, P.W., Peng, X., Huo, W.J. and Zhou, H.D. (2014). Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish. Environmental Toxicology and Chemistry, 33(1): 170-176.
(80) Ndonwi, E.N., Atogho-Tiedeu, B., Lontchi-Yimagou, E., Shinkafi, T.S., Nanfa, D., Balti, E.V., Indusmita, R., Mahmood, A., Katte, J.C., Mbanya, A. and Matsha, T. (2019). Gestational exposure to pesticides induces oxidative stress and lipid peroxidation in offspring that persist at adult age in an animal model. Toxicological Research, 35(3): 241-248.
(81) Abdel-Rahman Mohamed, A., Abdel Rahman, A.N., Salem, G.A., Deib, M.M.E., Nassan, M.A., Rhouma, N.R. and Khater, S.I. (2021). The antioxidant role of a taurine-enriched diet in combating the immunotoxic and inflammatory effects of pyrethroids and/or carbamates in Oreochromis niloticus. Animals, 11(5): 1318.
(82) Borgesa, A.C.P., Piassao, J.F.G., Albani, S.M., Albertoni, E.F., Martins, M.C., Cansian, R.L., Valduga, A.T., Hepp, L.U. and Mielniczki-Pereira, A.A. (2022). Multiple metals and agricultural use affects oxidative stress biomarkers in freshwater Aegla crabs/Presenca de multiplos metais e agricultura afetam biomarcadores de estresse oxidativo em caranguejos de agua doce (Aegla). Brazilian Journal of Biology, 82: e230147.
(83) Hellou, J., Ross, N.W. and Moon, T.W. (2012). Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environmental Science and Pollution Research, 19(6): 2007-2023.
(84) Ge, W., Yan, S., Wang, J., Zhu, L., Chen, A. and Wang, J. (2015). Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). Journal of agricultural and food chemistry, 63(6): 1856-1862.
(85) John, S., Kale, M., Rathore, N. and Bhatnagar, D. (2001). Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. The Journal of Nutritional Biochemistry, 12(9): 500-504.
(86) Svensson, R., Rinaldi, R., Swedmark, S. and Morgenstern, R. (2000). Reactivity of cysteine-49 and its influence on the activation of microsomal glutathione transferase 1: evidence for subunit interaction. Biochemistry, 39(49): 15144-15149.
(87) Chang, Y., Mao, L., Zhang, L., Zhang, Y. and Jiang, H. (2020). Combined toxicity of imidacloprid, acetochlor, and tebuconazole to zebrafish (Danio rerio): acute toxicity and hepatotoxicity assessment. Environmental Science and Pollution Research, 27(10): 10286-10295.
(88) Günal, A.Ç., Erkmen, B., Paçal, E., Arslan, P., Yildirim, Z. and Erkoç, F. (2020). Sub-lethal Effects of Imidacloprid on Nile tilapia (Oreochromis niloticus). Water, Air, & Soil Pollution, 231(1): 1-10.
(89) Safi, F., Beger, H.G., Bittner, R., Büchler, M. and Krautzberger, W. (1986). CA 19‐9 and pancreatic adenocarcinoma. Cancer, 57(4): 779-783.
(90) Wahab, M.A., El-Bendary, M., Ali, M.A., Shehta, A., Abed, S., Shehatta, A.S., Salah, M. and El-Gilany, A.H. (2018). Serum Levels of Heavy Metals in Cholangiocarcinoma Patients from the Nile Delta Region of Egypt: A Single Centre Study. Surg. Gastroenterol, 23(3): 186-190.
(91) Abdel-Hamid, O.M., Nafee, A.A., MA, E. and MA, E. (2018). The ameliorative effect of Vitamin C in experimentally induced colon cancer in rats. Benha Veterinary Medical Journal, 34(1): 329-343.
(92) Kim, S., Park, B.K., Seo, J.H., Choi, J., Choi, J.W., Lee, C.K., Chung, J.B., Park, Y. and Kim, D.W. (2020). Carbohydrate antigen 19-9 elevation without evidence of malignant or pancreatobiliary diseases. Scientific reports, 10: 8820.
(93) Sepici-Dinçel, A., Benli, A.Ç.K., Selvi, M., Sarıkaya, R., Şahin, D., Özkul, I.A. and Erkoç, F. (2009). Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicology and Environmental Safety, 72(5): 1433-1439.
(94) Nemeth, E., Baird, A.W. and O’Farrelly, C., 2009, September. Microanatomy of the liver immune system. Seminars in immunopathology, 31(3): 333-343.
(95) Rout, P.C. and Naik, B.N., 1998. Elevation of blood histamine and C-RP durings short-term lead exposure in Clarias batrachus (Linn.). Journal of Nature Conservators, 10(2): 169-173.
(96) Chatterjee, R. (2016). Estimation of endosulfan toxicity on blood biochemistry of channel catfish Clarias batrachus Linn. South Indian Journal of Biological Sciences, 2(4): 445-450.
(97) Paul, I., Mandal, C. and Mandal, C. (1998). Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Catla catla. Developmental & Comparative Immunology, 22(5-6): 519-532.
(98) Kodama, H., Matsuoka, Y., Tanaka, Y., Liu, Y., Iwasaki, T. and Watarai, S. (2004). Changes of C-reactive protein levels in rainbow trout (Oncorhynchus mykiss) sera after exposure to anti-ectoparasitic chemicals used in aquaculture. Fish & shellfish immunology, 16(5): 589-597.
(99) Tarnawska, M., Augustyniak, M., Łaszczyca, P., Migula, P., Irnazarow, I., Krzyżowski, M. and Babczyńska, A. (2019). Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. Fish and Shellfish Immunology, 88: 17-27.