[1] Wellbrock, C., Karasarides, M., Marais, R. (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5, 875–885.
[2] Galabova-Kovacs, G., Catalanotti, F., Matzen, D., Reyes, G.X., Zezula, J., Herbst, R., Silva, A., Walter, I., Baccarini, M. (2008). Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J Cell Biol 180, 947–955.
[3] Tien, A.C., Tsai, H.H., Molofsky, A.V., McMahon, M., Foo, L.C., Kaul, A., Dougherty, J.D., Heintz, N., Gutmann, D.H., Barres, B.A., Rowitch, D.H. (2012). Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 139, 2477–2487.
[4] Schreck, K.C., Grossman, S.A., Pratilas, C.A. (2019). BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors. Cancers (Basel) 11, 1262.
[5] Zaman, A., Wu, W., Bivona, T.G. (2019). Targeting Oncogenic BRAF: Past, Present, and Future. Cancers (Basel) 11, 1197.
[6] Zhong, J. (2016). RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction. Biol Chem 397, 215–222.
[7] Frebel, K., Wiese, S. (2006). Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 34, 1287–1290.
[8] Wojnowski, L., Zimmer, A.M., Beck, T.W., Hahn, H., Bernal, R., Rapp, U.R., Zimmer, A. (1997). Endothelial apoptosis in Braf-deficient mice. Nat Genet 16, 293–297.
[9] Chen, A.P., Ohno, M., Giese, K.P., Kuhn, R., Chen, R.L., Silva, A.J. (2006). Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J Neurosci Res 83, 28–38.
[10] Lim, C.S., Kang, X., Mirabella, V., Zhang, H., Bu, Q., Araki, Y., Hoang, E.T., Wang, S., Shen, Y., Choi, S., et al. (2017). BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method. Genes Dev 31, 537–552.
[11] Goz, R.U., Akgul, G., LoTurco, J.J. (2020). BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons. J Neurophysiol 123, 2449–2464.
[12] Koh, H.Y., Kim, S.H., Jang, J., Kim, H., Han, S., Lim, J.S., Son, G., Choi, J., Park, B.O., Heo, W.D., et al. (2018). BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat Med 24,1662–1668.
[13] Urosevic, S., Collins, P., Muetzel, R., Lim, K., Luciana, M. (2012). Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Dev Psychol 48, 1488–1500.
[14] Mass, E., Jacome-Galarza, C.E., Blank, T., Lazarov, T., Durham, B.H., Ozkaya, N., Pastore, A., Schwabenland, M., Chung, Y.R., Rosenblum, M.K., et al. (2017). A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393.
[15] Uenaka, T., Satake, W., Cha, P.C., Hayakawa, H., Baba, K., Jiang, S.Y., Kobayashi, K.,Kanagawa, M., Okada, Y., Mochizuki, H., et al. (2018). In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson's disease. Human Molecular Genetics 27, 3974–3985.
[16] Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Ceña, V., Gallego, C., Comella. J.X. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75, 991–1003.
[17] Hilgenberg, L.G., Smith, M.A. (2007). Preparation of dissociated mouse cortical neuron cultures. J Vis Exp 10, 562.
[18] Sciarretta, C., Minichiello, L. (2010). The preparation of primary cortical neuron cultures and a practical application using immunofluorescent cytochemistry. Methods of Molecular Biology 633, 221–231.
[19] Roy, J. (2018). Primary microglia isolation from mixed cell cultures of neonatal mouse brain tissue. Brain Research 1689, 21–29.
[20] Lian H, Roy E, Zheng H. (2016). Protocol for Primary Microglial Culture Preparation. Bio Protoc 6, e1989.
[21] Ahlemeyer B, Baumgart-Vogt E. (2005). Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice. J Neurosci Methods 149, 110–120.
[22] Kawakami H, Huang S, Pal K, Dutta SK, Mukhopadhyay D, Sinicrope FA. (2016). Mutant BRAF Upregulates MCL-1 to Confer Apoptosis Resistance that Is Reversed by MCL-1 Antagonism and Cobimetinib in Colorectal Cancer. Mol Cancer Ther 15, 3015–3027.
[23] Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi. W., Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47.
[24] Huang da W, Sherman BT, Lempicki RA. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.
[25] Wan, P.T., Garnett, M.J., Roe, S.M., Lee, S., Niculescu-Duvaz, D., Good, V.M., Jones, C.M., Marshall, C.J., Springer, C.J., Barford, D., et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867.
[26] Hollville, E., Romero, S.E., Deshmukh, M. (2019). Apoptotic cell death regulation in neurons. FEBS J 286, 3276–3298.
[27] Hossain, M.S., Ifuku, M., Take, S., Kawamura, J., Miake, K., Katafuchi, T. (2013). Plasmalogens Rescue Neuronal Cell Death through an Activation of AKT and ERK Survival Signaling. PLOS ONE 8, e83508.
[28] Robinson, J.P., VanBrocklin, M.W., Guilbeault, A.R., Signorelli, D.L., Brandner, S., Holmen, S.L. (2010). Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene 29, 335–344.
[29] Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescuduvaz, D., Springer, C.J., Marais, R. (2018). V599EB-RAF is an Oncogene in Melanocytes. Cancer Research 64, 2338–2342.
[30] Maraka S, Janku F. (2018). BRAF alterations in primary brain tumors. Discov Med 26, 51–60.
[31] Gronych, J., Korshunov, A., Bageritz, J., Milde, T., Jugold, M., Hambardzumyan, D., Remke, M., Hartmann, C., Witt, H., Jones, D.T., et al. (2011). An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. J Clin Invest 121, 1344–1348.
[32] Schreiner B, Greter M. (2017). EMPhasis on Mutant Microglia: Dysregulation of Brain Sentinels Induces Neurodegeneration. Cell Stem Cell 21, 566–568.
[33] Kuske, M., Westphal, D., Wehner, R., Schmitz, M., Beissert, S., Praetorius, C., Meier, F.
(2018). Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy. Pharmacol Res 136, 151–159.
[34] Wang, T., Feldman, G.M., Herlyn, M., Kaufman, R.E. (2015). The macrophage: Switches from a passenger to a driver during anticancer therapy. Oncoimmunology 4, e1052929.
[35] Ribeiro, M.J., Idbaih, A., Thomas, C., Remy, P., Martin-Duverneuil, N., Samson, Y., Donadieu, J., Hoang-Xuan, K. (2008). 18F-FDG PET in neurodegenerative Langerhans cell histiocytosis : results and potential interest for an early diagnosis of the disease. J Neurol 255, 575–580.
[36] Chen, M.J., Ramesha, S., Weinstock, L.D., Gao, T., Ping, L., Xiao, H. (2019). Microglial ERK activation is a critical regulator of pro-inflammatory immune responses in Alzheimer's disease. bioRxiv, 98215.
[37] Sarkar, S., Lu, E., Raymick, J., Hanig, J.P., Gu, Q. (2019). ERK/MAP Kinase Activation is Evident in Activated Microglia of the Striatum and Substantia Nigra in an Acute and Chronically-Induced Mouse Model of Parkinson's Disease. Current Neurovascular Research 15, 336–344.
[38] Fallahisichani, M., Moerke, N.J., Niepel, M., Zhang, T., Gray, N.S., Sorger, P.K. (2015). Systematic analysis of BRAFV600E melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Molecular Systems Biology 11, 797.
[39] Vin, H., Ojeda, S.S., Ching, G., Leung, M.L., Chitsazzadeh, V., Dwyer, D.W., Adelmann, C.H., Restrepo, M., Richards, K.N., Stewart, L.R., et al. (2013). BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. Elife 2, e00969.
[40] Dhanasekaran, D.N., Reddy, E.P. (2017). JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer 8, 682–694.
[41] Chauhan, M., Modi, P.K., Sharma, P. (2020). Aberrant activation of neuronal cell cycle caused by dysregulation of ubiquitin ligase Itch results in neurodegeneration. Cell Death Dis 11, 441.
[42] Hutton, S.R., Otis. J.M., Kim, E.M., Lamsal, Y., Stuber, G.D., Snider, W.D. (2017). ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 37, 8102–8015.
[43] Zhu, X,, Lee, H.G., Raina, A.K., Perry, G., Smith, M.A. (2002). The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals 11, 270–281.
[44] Sun, J., Nan, G. (2017). The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 39, 1338–1346.
[45] Zhong, J., Li, X., McNamee, C., Chen, A.P., Baccarini, M., Snider, W.D. (2007). Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 10, 598–607.
[46] Chen, H.M., Wang, L., D'Mello, S.R. (2008). Inhibition of ATF-3 expression by B-Raf mediates the neuroprotective action of GW5074. J Neurochem 105, 1300–1312.
[47] Heneka, M.T. (2019). Microglia take centre stage in neurodegenerative disease. Nat Rev Immunol 19, 79–80.
[48] Ye, Q., Wen, Y., Al-Kuwari, N., Chen, X.Q. (2020). Association Between Parkinson's Disease and Melanoma: Putting the Pieces Together. Front Aging Neurosci 12, 60.
[49] Iglesias, E., Pesini, A., Garrido-Pérez, N., Meade, P., Bayona-Bafaluy, M.P., Montoya. J., Ruiz-Pesini, E. (2018). Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res Rev 45, 24–32.
[50] Nemani, V.M., Lu. W., Berge, V., Nakamura, K., Onoa, B., Lee, M.K., Chaudhry, F.A., Nicoll, R.A., Edwards, R.H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79.