Magnetoencephalography (MEG) records brain activity with excellent temporal and good spatial resolution, while functional magnetic resonance imaging (fMRI) offers good temporal and excellent spatial resolution. The aim of this study is to implement a Bayesian framework to use fMRI data as spatial priors for MEG inverse solutions. We used simulated MEG data with both evoked and induced activity and experimental MEG data from sixteen participants to examine the effectiveness of using fMRI spatial priors in MEG source reconstruction. Our results provide empirical evidence that the use of fMRI spatial priors improves the accuracy of MEG source reconstruction.