Cognitive Radio (CR) network was introduced as a promising approach in utilizing spectrum holes. Spectrum sensing is the first stage of this utilization which could be improved using cooperation, namely Cooperative Spectrum Sensing (CSS), where some Secondary Users (SUs) collaborate to detect the existence of the Primary User (PU). In this paper, to improve the accuracy of detection Deep Learning (DL) is used. In order to make it more practical, Recurrent Neural Network (RNN) is used since there are some memory in the channel and the state of the PUs in the network. Hence, the proposed RNN is compared with the Convolutional Neural Network (CNN), and it represents useful advantages to the contrast one, which is demonstrated by simulation.