Bönnemann, C. G., Cox, G. F., Shapiro, F., Wu, J.-J., Feener, C. A., Thompson, T. G., . . . Kunkel, L. M. (2000). A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proceedings of the National Academy of Sciences, 97(3), 1212-1217.
Czarny-Ratajczak, M., Lohiniva, J., Rogala, P., Kozlowski, K., Perälä, M., Carter, L., . . . Glazar, R. (2001). A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. The American Journal of Human Genetics, 69(5), 969-980.
Jackson, G. C., Marcus‐Soekarman, D., Stolte‐Dijkstra, I., Verrips, A., Taylor, J. A., & Briggs, M. D. (2010). Type IX collagen gene mutations can result in multiple epiphyseal dysplasia that is associated with osteochondritis dissecans and a mild myopathy. American Journal of Medical Genetics Part A, 152(4), 863-869.
Jakkula, E., Melkoniemi, M., Kiviranta, I., Lohiniva, J., Räinä, S., Perälä, M., . . . Göring, H. (2005). The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis and cartilage, 13(6), 497-507.
Jiang, X., Wang, Y., Fan, D., Zhu, C., Liu, L., & Duan, Z. (2017). A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility. Journal of biomaterials applications, 31(8), 1099-1107.
Khaleduzzaman, M., Sumiyoshi, H., Ueki, Y., Inoguchi, K., Ninomiya, Y., & Yoshioka, H. (1997). Structure of the human type XIX collagen (COL19A1) gene, which suggests it has arisen from an ancestor gene of the FACIT family. Genomics, 45(2), 304-312.
Lohiniva, J., Paassilta, P., Seppänen, U., Vierimaa, O., Kivirikko, S., & Ala‐Kokko, L. (2000). Splicing mutations in the COL3 domain of collagen IX cause multiple epiphyseal dysplasia. American journal of medical genetics, 90(3), 216-222.
Lü, A., Guo, X., Aisha, M., Shi, X., Zhang, Y. Z., & Zhang, Y. (2011). Kashin–Beck disease and Sayiwak disease in China: Prevalence and a comparison of the clinical manifestations, familial aggregation, and heritability. Bone, 48(2), 347-353.
Mustafa, Z., Chapman, K., Irven, C., Carr, A., Clipsham, K., Chitnavis, J., . . . Cox, O. (2000). Linkage analysis of candidate genes as susceptibility loci for osteoarthritis—suggestive linkage of COL9A1 to female hip osteoarthritis. Rheumatology, 39(3), 299-306.
Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor perspectives in biology, 3(1), a004978.
Shi, X., Zhang, F., Lv, A., Wen, Y., & Guo, X. (2015). COL9A1 gene polymorphism is associated with Kashin-Beck disease in a northwest Chinese Han population. PloS one, 10(3), e0120365.
Shi, Y., Lu, F., Liu, X., Wang, Y., Huang, L., Liu, X., . . . Ma, S. (2011). Genetic variants in the HLA–DRB1 gene are associated with Kashin‐Beck disease in the Tibetan population. Arthritis & Rheumatism, 63(11), 3408-3416.
Su, J., Cole, J., & Fox, M. A. (2017). Loss of interneuron-derived collagen XIX leads to a reduction in Perineuronal nets in the mammalian telencephalon. ASN neuro, 9(1), 1759091416689020.
Su, J., Gorse, K., Ramirez, F., & Fox, M. A. (2010). Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. Journal of Comparative Neurology, 518(2), 229-253.
Sumiyoshi, H., Laub, F., Yoshioka, H., & Ramirez, F. (2001). Embryonic expression of type XIX collagen is transient and confined to muscle cells. Developmental dynamics: an official publication of the American Association of Anatomists, 220(2), 155-162.
Wang, S. J., Guo, X., Zuo, H., Zhang, Y. G., Xu, P., Ping, Z. G., . . . Geng, D. (2006). Chondrocyte apoptosis and expression of Bcl-2, Bax, Fas, and iNOS in articular cartilage in patients with Kashin-Beck disease. The Journal of rheumatology, 33(3), 615-619.
Wang, W.-Z., Guo, X., Duan, C., Ma, W. J., Zhang, Y., Xu, P., . . . Zhang, Y. (2009). Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis. Osteoarthritis and Cartilage, 17(1), 83-90.
Wang, X., Ning, Y., Tan, W., Yu, H., Li, Z., & Guo, X. (2016). Population-based comparative analysis of differentially expressed genes between Kashin–Beck disease grades I and II. Scandinavian journal of rheumatology, 45(3), 230-235.
Zhang, F., Guo, X., Duan, C., Wu, S., Yu, H., & Lammi, M. (2013). Identification of differentially expressed genes and pathways between primary osteoarthritis and endemic osteoarthritis (Kashin–Beck disease). Scandinavian journal of rheumatology, 42(1), 71-79.
Zhang, F., Guo, X., Wang, W., Yan, H., & Li, C. (2011). Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. PloS one, 6(7), e22983.
Zhang, G., Liu, J., Yu, J., Shi, Y., & Zhang, S. (1989). Ultrastructure of chondrocytes in articular cartilage of Kashin-Beck disease. Chin J Endemiol, 8, 27-30.