1. Larsen, F. S. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 28, 719–723 (1993).
2. Cork, M. J. et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129, 1892–1908 (2009).
3. Luger, T. et al. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci 102, 142–157 (2021).
4. Cookson, W. O. C. M. et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 27, 372–373 (2001).
5. Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nature Genetics 2011 44:2 44, 187–192 (2011).
6. Mischke, D., Korge, B. P., Marenholz, I., Volz, A. & Ziegler, A. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex (‘epidermal differentiation complex’) on human chromosome 1q21. J Invest Dermatol 106, 989–992 (1996).
7. Itoyama, T. et al. Molecular cytogenetic analysis of genomic instability at the 1q12-22 chromosomal site in B-cell non-Hodgkin lymphoma. Genes Chromosomes Cancer 35, 318–328 (2002).
8. Wong, N. et al. Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression. J Hepatol 38, 298–306 (2003).
9. Chen, Y. et al. Loss of heterozygosity of chromosome 1q in gastrinomas: occurrence and prognostic significance. AACR 63, 817–823 (2003).
10. Forus, A. et al. Molecular characterization of a novel amplicon at 1q21-q22 frequently observed in human sarcomas. British Journal of Cancer 1998 78:4 78, 495–503 (1998).
11. Eckert, R. L. et al. S100 proteins in the epidermis. J Invest Dermatol 123, 23–33 (2004).
12. Marenholz, I., Heizmann, C. W. & Fritz, G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322, 1111–1122 (2004).
13. Gan, S. Q., McBride, O. W., Idler, W. W., Markova, N. & Steinert, P. M. Organization, structure, and polymorphisms of the human profilaggrin gene. Biochemistry 29, 9432–9440 (1990).
14. Contzler, R., Favre, B., Huber, M. & Hohl, D. Cornulin, a New Member of the “Fused Gene” Family, Is Expressed During Epidermal Differentiation. Journal of Investigative Dermatology 124, 990–997 (2005).
15. Krieg, P. et al. Repetin (Rptn), a New Member of the “Fused Gene” Subgroup within the S100 Gene Family Encoding a Murine Epidermal Differentiation Protein. Genomics 43, 339–348 (1997).
16. Takaishi, M., Makino, T., Morohashi, M. & Huh, N. H. Identification of Human Hornerin and Its Expression in Regenerating and Psoriatic Skin *. Journal of Biological Chemistry 280, 4696–4703 (2005).
17. Kypriotou, M., Huber, M. & Hohl, D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol 21, 643–649 (2012).
18. Wu, Z., Latendorf, T., Meyer-Hoffert, U. & Schröder, J.-M. Identification of trichohyalin-like 1, an s100 fused-type protein selectively expressed in hair follicles. scholar.archive.org 131, 1761–1763 (2011).
19. Lee, S., Wang, M., McBride, O., … E. O.-J. of investigative & 1993, undefined. Human trichohyalin gene is clustered with the genes for other epidermal structural proteins and calcium-binding proteins at chromosomal locus 1q21. Elsevier.
20. Backendorf, C. & Hohl, D. A common origin for cornified envelope proteins? Nature Genetics 1992 2:2 2, 91–91 (1992).
21. Marshall, D., Hardman, M. J., Nield, K. M. & Byrne, C. Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci U S A 98, 13031 (2001).
22. Zhao, X., Genomics, J. E.- & 1997, undefined. Positional cloning of novel skin-specific genes from the human epidermal differentiation complex. Elsevier.
23. Jackson, B. et al. Late Cornified Envelope Family in Differentiating Epithelia—Response to Calcium and Ultraviolet Irradiation. Journal of Investigative Dermatology 124, 1062–1070 (2005).
24. Morar, N., Cookson, W. O. C. M., Harper, J. I. & Moffatt, M. F. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol 127, 1667–1672 (2007).
25. Sybert, V., Dale, B., dermatology, K. H.-J. of investigative & 1985, undefined. Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. Elsevier.
26. Fleckman, P., Holbrook, K. A., Dale, B. A. & Sybert, V. P. Keratinocytes Cultured From Subjects With Ichthyosis Vulgaris Are Phenotypically Abnormal. Journal of Investigative Dermatology 88, 640–645 (1987).
27. Peña Penabad, C. et al. Differential patterns of filaggrin expression in lamellar ichthyosis. Br J Dermatol 139, 958–964 (1998).
28. Smith, F. J. D. et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38, 337–342 (2006).
29. Palmer, C. N. A. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38, 441–446 (2006).
30. Weidinger, S. et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 118, 214–219 (2006).
31. Marenholz, I. et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol 118, 866–871 (2006).
32. Barker, J. N. W. N. et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol 127, 564–567 (2007).
33. Enomoto, H. et al. Filaggrin null mutations are associated with atopic dermatitis and elevated levels of IgE in the Japanese population: a family and case–control study. Journal of Human Genetics 2008 53:7 53, 615–621 (2008).
34. Ruether, A., Stoll, M., Schwarz, T., Schreiber, S. & Fölster-Holst, R. Filaggrin loss-of-function variant contributes to atopic dermatitis risk in the population of Northern Germany. Br J Dermatol 155, 1093–1094 (2006).
35. Sandilands, A. et al. Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol 126, 1770–1775 (2006).
36. Nomura, T. et al. Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J Allergy Clin Immunol 119, 434–440 (2007).
37. Rodríguez, E., Illig, T. & Weidinger, S. Filaggrin loss-of-function mutations and association with allergic diseases. Pharmacogenomics 9, 399–413 (2008).
38. Nemoto-Hasebe, I. et al. FLG mutation p.Lys4021X in the C-terminal imperfect filaggrin repeat in Japanese patients with atopic eczema. British Journal of Dermatology 161, 1387–1390 (2009).
39. Osawa, R. et al. Japanese-specific filaggrin gene mutations in Japanese patients suffering from atopic eczema and asthma. J Invest Dermatol 130, 2834–2836 (2010).
40. Cheng, R. et al. Common FLG Mutation K4671X Not Associated with Atopic Dermatitis in Han Chinese in a Family Association Study. PLoS One 7, e49158 (2012).
41. Pigors, M. et al. Exome Sequencing and Rare Variant Analysis Reveals Multiple Filaggrin Mutations in Bangladeshi Families with Atopic Eczema and Additional Risk Genes. Journal of Investigative Dermatology 138, 2674–2677 (2018).
42. Koseki, R. et al. Effect of filaggrin loss-of-function mutations on atopic dermatitis in young age: a longitudinal birth cohort study. Journal of Human Genetics 2019 64:9 64, 911–917 (2019).
43. Handa, S., Khullar, G., Pal, A., Kamboj, P. & De, D. Filaggrin gene mutations in hand eczema patients in the Indian subcontinent: A prospective case-control study. Contact Dermatitis 80, 359–364 (2019).
44. Jurakic Toncic, R. et al. Filaggrin loss-of-function mutations and levels of filaggrin degradation products in adult patients with atopic dermatitis in Croatia. J Eur Acad Dermatol Venereol 34, 1789–1794 (2020).
45. Smieszek, S. P. et al. Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status. Scientific Reports 2020 10:1 10, 1–11 (2020).
46. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020 581:7809 581, 434–443 (2020).
47. Brown, S. J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127, 661–667 (2011).
48. Novak, N. et al. Loss-of-function mutations in the filaggrin gene and allergic contact sensitization to nickel. J Invest Dermatol 128, 1430–1435 (2008).
49. van den Oord, R. A. H. M. & Sheikh, A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339, 86–88 (2009).
50. Rodríguez, E. et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. Journal of Allergy and Clinical Immunology 123, 1361-1370.e7 (2009).
51. Sherrill, J. D. & Blanchard, C. Genetics of Eosinophilic Esophagitis. Digestive Diseases 32, 22–29 (2014).
52. Lu, J. et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling 19, 1–10 (2021).
53. Presland, R., Haydock, P., … P. F.-J. of B. & 1992, undefined. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino. Elsevier.
54. Aho, S., Harding, C. R., Lee, J. M., Meldrum, H. & Bosko, C. A. Regulatory Role for the Profilaggrin N-Terminal Domain in Epidermal Homeostasis. Journal of Investigative Dermatology 132, 2376–2385 (2012).
55. Resing, K. A., Dale, B. A. & Walsh, K. A. Multiple copies of phosphorylated filaggrin in epidermal profilaggrin demonstrated by analysis of tryptic peptides. Biochemistry 24, 4167–4175 (2002).
56. Gutowska-Owsiak, D. et al. Orchestrated control of filaggrin–actin scaffolds underpins cornification. Cell Death & Disease 2018 9:4 9, 1–18 (2018).
57. Resing, K. A., Johnson, R. S. & Walsh, K. A. Characterization of Protease Processing Sites during Conversion of Rat Profilaggrin to Filaggrin. Biochemistry 32, 10036–10045 (1993).
58. Ishida-Yamamoto, A., Takahashi, H., Presland, R. B., Dale, B. A. & Iizuka, H. Translocation of profilaggrin N-terminal domain into keratinocyte nuclei with fragmented DNA in normal human skin and loricrin keratoderma. Lab Invest 78, 1245–1253 (1998).
59. Pearton, D. J., Dale, B. A. & Presland, R. B. Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol 119, 661–669 (2002).
60. Yamamoto-Tanaka, M. et al. Multiple pathways are involved in DNA degradation during keratinocyte terminal differentiation. Cell Death & Disease 2014 5:4 5, e1181–e1181 (2014).
61. Naeem, A. S., Zhu, Y., Di, W. L., Marmiroli, S. & O’Shaughnessy, R. F. L. AKT1-mediated Lamin A/C degradation is required for nuclear degradation and normal epidermal terminal differentiation. Cell Death & Differentiation 2015 22:12 22, 2123–2132 (2015).
62. Matsui, T. et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med 3, 320–333 (2011).
63. Sakabe, J. I. et al. Kallikrein-related Peptidase 5 Functions in Proteolytic Processing of Profilaggrin in Cultured Human Keratinocytes. J Biol Chem 288, 17179 (2013).
64. Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nature Reviews Molecular Cell Biology 2005 6:4 6, 328–340 (2005).
65. Steinert, P. M., Cantieri, J. S., Teller, D. C., Lonsdale-Eccles, J. D. & Dale, B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A 78, 4097–4101 (1981).
66. Nachat, R. et al. Peptidylarginine Deiminase Isoforms 1–3 Are Expressed in the Epidermis and Involved in the Deimination of K1 and Filaggrin. Journal of Investigative Dermatology 124, 384–393 (2005).
67. Takahashi, M., Tezuka, T. & Katunuma, N. Filaggrin Linker Segment Peptide and Cystatin α Are Parts of a Complex of the Cornified Envelope of Epidermis. Arch Biochem Biophys 329, 123–126 (1996).
68. Denecker, G. et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9, 666–674 (2007).
69. Yamazaki, M., Ishidoh, K., Suga, Y., … T. S.-B. and & 1997, undefined. Cytoplasmic processing of human profilaggrin by active μ-calpain. Elsevier.
70. Kamata, Y. et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. Journal of Biological Chemistry 284, 12829–12836 (2009).
71. Bonnart, C. et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 120, 871–882 (2010).
72. List, K. et al. Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163, 901–910 (2003).
73. Leyvraz, C. et al. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. Journal of Cell Biology 170, 487–496 (2005).
74. Rawlings, A. v. & Harding, C. R. Moisturization and skin barrier function. Dermatol Ther 17, 43–48 (2004).
75. Miajlovic, H., Fallon, P., Irvine, A., clinical, T. F.-J. of allergy and & 2010, undefined. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. Elsevier.
76. Tabachnick, J. Urocanic acid, the major acid-soluble, ultraviolet-absorbing compound in guinea pig epidermis. Arch Biochem Biophys 70, 295–298 (1957).
77. Kezic, S. et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 66, 934 (2011).
78. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu Rev Biochem 61, 761–807 (1992).
79. Komander, D., biochemistry, M. R.-A. review of & 2012, undefined. The ubiquitin code. annualreviews.org 81, 203–229 (2012).
80. Hershko, A. & Ciechanover, A. THE UBIQUITIN SYSTEM. https://doi.org/10.1146/annurev.biochem.67.1.425 67, 425–479 (2003).
81. Oh, E., Akopian, D. & Rape, M. Principles of Ubiquitin-Dependent Signaling. Annu Rev Cell Dev Biol 34, 137–162 (2018).
82. Husnjak, K. & Dikic, I. Ubiquitin-Binding Proteins: Decoders of Ubiquitin-Mediated Cellular Functions. http://dx.doi.org/10.1146/annurev-biochem-051810-094654 81, 291–322 (2012).
83. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex. Cell 133, 653–665 (2008).
84. Chau, V. et al. A Multiubiquitin Chain Is Confined to Specific Lysine in a Targeted Short-Lived Protein. Science (1979) 243, 1576–1583 (1989).
85. Meyer, H. J. & Rape, M. Enhanced Protein Degradation by Branched Ubiquitin Chains. Cell 157, 910–921 (2014).
86. Ordureau, A. et al. Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol Cell 56, 360–375 (2014).
87. Lauwers, E., Jacob, C. & Andre, B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. Journal of Cell Biology 185, 493–502 (2009).
88. Duncan, L. M. et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 25, 1635–1645 (2006).
89. Kravtsova-Ivantsiv, Y. & Ciechanover, A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 125, 539–548 (2012).
90. McClellan, A. J., Laugesen, S. H. & Ellgaard, L. Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biol 9, 190147 (2019).
91. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci U S A 116, 358–366 (2019).
92. Guharoy, M., Lazar, T., Macossay-Castillo, M. & Tompa, P. Degron masking outlines degronons, co-degrading functional modules in the proteome. Commun Biol 5, (2022).
93. Guharoy, M., Bhowmick, P., Sallam, M. & Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat Commun 7, (2016).
94. Chen, L. & Kashina, A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 9, (2021).
95. van Roey, K., Dinkel, H., Weatheritt, R. J., Gibson, T. J. & Davey, N. E. The switches.ELM resource: A compendium of conditional regulatory interaction interfaces. Sci Signal 6, (2013).
96. Lucas, X. & Ciulli, A. Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr Opin Struct Biol 44, 101–110 (2017).
97. Millar, A. H. et al. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. https://doi.org/10.1146/annurev-arplant-050718-100211 70, 119–151 (2019).
98. Tokheim, C. et al. Systematic characterization of mutations altering protein degradation in human cancers. Mol Cell 81, 1292-1308.e11 (2021).
99. Kampmeyer, C. et al. Disease-linked mutations cause exposure of a protein quality control degron. Structure 30, 1245-1253.e5 (2022).
100. Moosbrugger-Martinz, V. et al. Revisiting the Roles of Filaggrin in Atopic Dermatitis. International Journal of Molecular Sciences 2022, Vol. 23, Page 5318 23, 5318 (2022).
101. Resing, K. A., Walsh, K. A. & Dale, B. A. Identification of two intermediates during processing of profilaggrin to filaggrin in neonatal mouse epidermis. Journal of Cell Biology 99, 1372–1378 (1984).
102. Scott, I. R., Harding, C. R. & Barrett, J. G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 719, 110–117 (1982).
103. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods (2012) doi:10.1038/nmeth.2089.
104. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020 581:7809 581, 434–443 (2020).
105. Zhao, G. et al. Gene4Denovo: an integrated database and analytic platform for de novo mutations in humans. Nucleic Acids Res 48, D913–D926 (2020).
106. denovo-db, Seattle, WA (URL: denovo-db.gs.washington.edu) [26(08,2022)accessed].
107. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50, W276–W279 (2022).
108. Szulc, N. A. et al. DEGRONOPEDIA - a web server for proteome-wide inspection of degrons. bioRxiv 2022.05.19.492622 (2022) doi:10.1101/2022.05.19.492622.
109. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132 (1982).
110. Koren, I. et al. The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. Cell 173, 1622-1635.e14 (2018).
111. Timms, R. T. et al. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science (1979) 364, (2019).
112. Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30, 187 (2021).
113. Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42, D358 (2014).
114. DiFiore, B. et al. The ABBA Motif Binds APC/C Activators and Is Shared by APC/C Substrates and Regulators. Dev Cell 32, 358–372 (2015).
115. Davey, N. E. & Morgan, D. O. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell 64, 12–23 (2016).
116. Zhuang, M. et al. Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Mol Cell 36, 39–50 (2009).
117. Quintás-Cardama, A. & Cortes, J. Molecular biology of bcr-abl1–positive chronic myeloid leukemia. Blood 113, 1619–1630 (2009).
118. Liu, J. et al. Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nature Communications 2021 12:1 12, 1–15 (2021).
119. Xu, F. et al. FBW7 suppresses ovarian cancer development by targeting the N 6-methyladenosine binding protein YTHDF2. Mol Cancer 20, (2021).
120. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022-3040.e28 (2021).
121. Ewing, R. M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3, 89–89 (2007).
122. Hickey, C. M., Breckel, C., Zhang, M., Theune, W. C. & Hochstrasser, M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 217, (2021).
123. Kats, I. et al. Mapping Degradation Signals and Pathways in a Eukaryotic N-terminome. Mol Cell 70, 488-501.e5 (2018).
124. Stefanovic-Barrett, S. et al. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep 19, e45603 (2018).
125. Culver, J. A., Li, X., Jordan, M. & Mariappan, M. A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins. BioEssays 44, 2200014 (2022).
126. Yoo, Y. D. et al. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis. Proc Natl Acad Sci U S A 115, E2716–E2724 (2018).
127. Dissmeyer, N., Rivas, S. & Graciet, E. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. New Phytologist 218, 929–935 (2018).
128. Wang, T. et al. The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Ann N Y Acad Sci 1460, 3–10 (2020).
129. Stefanovic‐Barrett, S. et al. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail‐anchored proteins. EMBO Rep 19, (2018).
130. Hickey, C. M., Breckel, C., Zhang, M., Theune, W. C. & Hochstrasser, M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 217, (2021).
131. Mattiroli, F. & Sixma, T. K. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nature Structural & Molecular Biology 2014 21:4 21, 308–316 (2014).
132. Dale, B. A., Presland, R. B., Lewis, S. P., Underwood, R. A. & Fleckman, P. Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J Invest Dermatol 108, 179–187 (1997).
133. Kuechle, M. K., Presland, R. B., Lewis, S. P., Fleckman, P. & Dale, B. A. Inducible expression of filaggrin increases keratinocyte susceptibility to apoptotic cell death. Cell Death Differ 7, 566–573 (2000).
134. Presland, R. B., Kuechle, M. K., Lewis, S. P., Fleckman, P. & Dale, B. A. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp Cell Res 270, 199–213 (2001).
135. Gutowska-Owsiak, D. Excess filaggrin in keratinocytes is removed by extracellular vesicles to prevent premature death and this mechanism can be hijacked by Staphylococcus aureus in a TLR2-dependent fashion. (2022) doi:10.21203/RS.3.RS-2085299/V1.
136. Cambridge, S. B. et al. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res 10, 5275–5284 (2011).
137. Yen, H. C. S., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science (1979) 322, 918–923 (2008).
138. Vahlquist, A., Ponten, F., dermato-venereologica, A. P.-A. & 1997, undefined. Keratosis linearis with ichthyosis congenita and sclerosing keratoderma (KLICK-syndrome): a rare, autosomal recessive disorder of keratohyaline formation? europepmc.org.
139. Dahlqvist, J. et al. A Single-Nucleotide Deletion in the POMP 5′ UTR Causes a Transcriptional Switch and Altered Epidermal Proteasome Distribution in KLICK Genodermatosis. Am J Hum Genet 86, 596–603 (2010).
140. Takeichi, T. & Akiyama, M. KLICK Syndrome Linked to a POMP Mutation Has Features Suggestive of an Autoinflammatory Keratinization Disease. Front Immunol 11, 641 (2020).
141. Morice-Picard, F. et al. KLICK syndrome: recognizable phenotype and hot-spot POMP mutation. Journal of the European Academy of Dermatology and Venereology 31, e154–e156 (2017).
142. Onnis, G. et al. KLICK syndrome: an unusual phenotype. British Journal of Dermatology 178, 1445–1446 (2018).
143. Dahlqvist, J. et al. A Single-Nucleotide Deletion in the POMP 5′ UTR Causes a Transcriptional Switch and Altered Epidermal Proteasome Distribution in KLICK Genodermatosis. Am J Hum Genet 86, 596–603 (2010).
144. Presland, R. B., Kuechle, M. K., Lewis, S. P., Fleckman, P. & Dale, B. A. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp Cell Res 270, 199–213 (2001).
145. Zieba, B. A. et al. The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin. J Dermatol Sci 88, 10–19 (2017).
146. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).
147. McDowell, G. S. & Philpott, A. Non-canonical ubiquitylation: Mechanisms and consequences. Int J Biochem Cell Biol 45, 1833–1842 (2013).
148. Squair, D. R. & Virdee, S. A new dawn beyond lysine ubiquitination. Nature Chemical Biology 2022 18:8 18, 802–811 (2022).
149. Aksnes, H., Drazic, A., Marie, M. & Arnesen, T. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases. Trends Biochem Sci 41, 746–760 (2016).
150. van Damme, P. et al. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A 109, 12449–12454 (2012).
151. Shemorry, A., Hwang, C. S. & Varshavsky, A. Control of Protein Quality and Stoichiometries by N-Terminal Acetylation and the N-End Rule Pathway. Mol Cell 50, 540–551 (2013).
152. Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Science 20, 1298–1345 (2011).
153. Park, S. E. et al. Control of mammalian g protein signaling by N-terminal acetylation and the N-end rule pathway. Science (1979) 347, 1249–1252 (2015).
154. Lee, K. E., Heo, J. E., Kim, J. M. & Hwang, C. S. N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway. Mol Cells 39, 169 (2016).
155. Brown, N. G. et al. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly. Mol Cell 56, 246–260 (2014).
156. Quek, L. S., Grasset, N., Jasmen, J. B., Robinson, K. S. & Bellanger, S. Dual Role of the Anaphase Promoting Complex/Cyclosome in Regulating Stemness and Differentiation in Human Primary Keratinocytes. Journal of Investigative Dermatology 138, 1851–1861 (2018).
157. Margottin-Goguet, F. et al. Prophase Destruction of Emi1 by the SCFβTrCP/Slimb Ubiquitin Ligase Activates the Anaphase Promoting Complex to Allow Progression beyond Prometaphase. Dev Cell 4, 813–826 (2003).
158. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 2003 426:6962 426, 87–91 (2003).
159. Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1. Mol Cell 23, 709–721 (2006).
160. Shaik, S. et al. SCFβ-TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. Journal of Experimental Medicine 209, 1289–1307 (2012).
161. Winston, J. T. et al. The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in. genesdev.cshlp.org (1999).
162. Guharoy, M., Bhowmick, P., Sallam, M. & Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nature Communications 2016 7:1 7, 1–13 (2016).
163. Resing, K. A., Johnson, R. S. & Walsh, K. A. Mass Spectrometric Analysis of 21 Phosphorylation Sites in the Internal Repeat of Rat Profilaggrin, Precursor of an Intermediate Filament Associated Protein. Biochemistry 34, 9477–9487 (1995).
164. Huang, H. et al. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 46, D542–D550 (2018).
165. Hornbeck, P. v. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520 (2015).
166. King, B. et al. Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7. Cell 153, 1552 (2013).
167. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyctin E by the SCFFbw7 ubiquitin ligase. Science (1979) 294, 173–177 (2001).
168. Mo, J.-S. et al. Integrin-Linked Kinase Controls Notch1 Signaling by Down-Regulation of Protein Stability through Fbw7 Ubiquitin Ligase. Mol Cell Biol 27, 5565–5574 (2007).
169. Inuzuka, H. et al. SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011 471:7336 471, 104–109 (2011).
170. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).
171. Mao, J. H. et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science (1979) 321, 1499–1502 (2008).
172. Yeh, C. H., Bellon, M. & Nicot, C. FBXW7: a critical tumor suppressor of human cancers. Molecular Cancer 2018 17:1 17, 1–19 (2018).
173. Shibata, E., Abbas, T., Huang, X., Wohlschlegel, J. A. & Dutta, A. Selective Ubiquitylation of p21 and Cdt1 by UBCH8 and UBE2G Ubiquitin-Conjugating Enzymes via the CRL4 Cdt2 Ubiquitin Ligase Complex . Mol Cell Biol 31, 3136–3145 (2011).
174. Centore, R. C. et al. CRL4Cdt2-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40, 22–33 (2010).
175. Abbas, T. & Dutta, A. P21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 9, 400–414 (2009).
176. Cui, H. et al. DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. Journal of Experimental and Clinical Cancer Research 38, (2019).
177. Ishii, T. et al. Proliferating cell nuclear antigen-dependent rapid recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged sites after UV irradiation in HeLa cells. Journal of Biological Chemistry 285, 41993–42000 (2010).
178. Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951–965 (2010).
179. Cai, W. & Yang, H. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Division 2016 11:1 11, 1–11 (2016).
180. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nature Reviews Cancer 2015 15:1 15, 55–64 (2014).
181. Martínez-Torres, I. et al. The Protective Role of pVHL in Imiquimod-Induced Psoriasis-like Skin Inflammation. International Journal of Molecular Sciences 2022, Vol. 23, Page 5226 23, 5226 (2022).
182. Yamazaki, S., Uchiumi, A. & Katagata, Y. Hsp40 regulates the amount of keratin proteins via ubiquitin-proteasome pathway in cultured human cells. Int J Mol Med 29, 165–168 (2012).
183. Logli, E. et al. Proteasome-mediated degradation of keratins 7, 8, 17 and 18 by mutant KLHL24 in a foetal keratinocyte model: Novel insight in congenital skin defects and fragility of epidermolysis bullosa simplex with cardiomyopathy. Hum Mol Genet 31, 1308–1324 (2022).
184. Takada, K. et al. Serum concentrations of free ubiquitin and multiubiquitin chains. Clin Chem 43, 1188–1195 (1997).
185. Sixt, S. U. & Dahlmann, B. Extracellular, circulating proteasomes and ubiquitin — Incidence and relevance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1782, 817–823 (2008).
186. Majetschak, M. Extracellular ubiquitin: immune modulator and endogenous opponent of damage-associated molecular pattern molecules. J Leukoc Biol 89, 205–219 (2011).
187. Ben-Nissan, G., Katzir, N., Füzesi-Levi, M. G. & Sharon, M. Biology of the Extracellular Proteasome. Biomolecules 2022, Vol. 12, Page 619 12, 619 (2022).
188. Ugai, S. I. et al. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated prot from rat liver. J Biochem 113, 754–768 (1993).
189. Klinkradt, S., Naudé, R. J., Muramoto, K. & Oelofsen, W. Purification and characterization of proteasome from ostrich liver. International Journal of Biochemistry and Cell Biology 29, 611–622 (1997).
190. Ostrowska, H., Ostrowska, J. K., Worowski, K. & Radziwon, P. Human platelet 20S proteasome: inhibition of its chymotrypsin-like activity and identification of the proteasome activator PA28. A preliminary report. http://dx.doi.org/10.1080/0953710031000092802 14, 151–157 (2009).
191. Passmore, L. A., Barford, D. & Harper, J. W. Purification and assay of the budding yeast anaphase-promoting complex. Methods Enzymol 398, 195–219 (2005).
192. Dang, N., Ma, X., Meng, X., An, L. & Pang, S. Dysregulated function of normal human epidermal keratinocytes in the absence of filaggrin. Mol Med Rep 14, 2566 (2016).
193. Pearton, D. J. et al. Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp Dermatol 10, 193–203 (2001).
194. Miyachi, Y. et al. Biochemical Demonstration and Immunohistochemical Localization of Calpain in Human Skin. Journal of Investigative Dermatology 86, 346–349 (1986).
195. Bernard, D. et al. Identification and Characterization of a Novel Retroviral-Like Aspartic Protease Specifically Expressed in Human Epidermis. J Gen Intern Med 20, 278–287 (2005).
196. Presland, R. B. et al. Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J Invest Dermatol 115, 1072–1081 (2000).
197. Sandilands, A. et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39, 650–654 (2007).