1. Roebroek, A. J., Contreras B., Pauli I. G., & Van de Ven W. J. cDNA cloning, genomic organization, and expression of the human RTN2 gene, a member of a gene family encoding reticulons. Genomics 51, 98-106, https://doi.org/10.1006/geno.1997.5175 (1998).
2. Roebroek, A. J., et al. Cloning and expression of alternative transcripts of a novel neuroendocrine-specific gene and identification of its 135-kDa translational product. The Journal of Biological Chemistry 268, 13439-13447, (1993).
3. Senden, N. H., et al. Neuroendocrine-specific protein C (NSP-C): subcellular localization and differential expression in relation to NSP-A. European Journal of Cell Biology 69, 197-213, (1996).
4. GrandPré, T., Nakamura F., Vartanian T., & Strittmatter S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444, https://doi.org/10.1038/35000226 (2000).
5. Tagami, S., Eguchi Y., Kinoshita M., Takeda M., & Tsujimoto Y. A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736-5746, https://doi.org/10.1038/sj.onc.1203948 (2000).
6. Senden, N., et al. Neuroendocrine-specific protein (NSP)-reticulons as independent markers for non-small cell lung cancer with neuroendocrine differentiation. An in vitro histochemical study. Histochemistry and Cell Biology 108, 155-165, (1997).
7. Senden, N. H., et al. A comparison of NSP-reticulons with conventional neuroendocrine markers in immunophenotyping of lung cancers. The Journal of Pathology 182, 13-21, https://doi.org/10.1002/(sici)1096-9896(199705)182:1<13::aid-path804>3.0.co;2-z (1997).
8. Alizadeh, A. A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511, https://doi.org/10.1038/35000501 (2000).
9. Lossos, I. S., et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. The New England Journal of Medicine 350, 1828-1837, https://doi.org/10.1056/NEJMoa032520 (2004).
10. Rosenwald, A., et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The New England Journal of Medicine 346, 1937-1947, https://doi.org/10.1056/NEJMoa012914 (2002).
11. Wright, G., et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America 100, 9991-9996, https://doi.org/10.1073/pnas.1732008100 (2003).
12. Lenz, G., et al. Stromal gene signatures in large-B-cell lymphomas. The New England Journal of Medicine 359, 2313-2323, https://doi.org/10.1056/NEJMoa0802885 (2008).
13. Shipp, M. A., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8, 68-74, https://doi.org/10.1038/nm0102-68 (2002).
14. Zamani-Ahmadmahmudi, M., & Nassiri S. M. Development of a Reproducible Prognostic Gene Signature to Predict the Clinical Outcome in Patients with Diffuse Large B-Cell Lymphoma. Scientific Reports 9, https://doi.org/10.1038/s41598-019-48721-0 (2019).
15. Alizadeh, A. A., et al. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood 118, 1350-1358, https://doi.org/10.1182/blood-2011-03-345272 (2011).
16. Haibe-Kains, B., Desmedt C., Sotiriou C., & Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics (Oxford, England) 24, 2200-2208, https://doi.org/10.1093/bioinformatics/btn374 (2008).
17. Chen, J., et al. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma. Oncotarget 6, 5597-5614, https://doi.org/10.18632/oncotarget.3343 (2015).
18. Di Sano, F., et al. Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells. Cancer Research 63, 3860-3865, (2003).
19. van de Velde, H. J., et al. NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Research 54, 4769-4776, (1994).
20. Lee, J. T., Lee T.-J., Kim C.-H., Kim N.-S., & Kwon T. K. Over-expression of Reticulon 3 (RTN3) enhances TRAIL-mediated apoptosis via up-regulation of death receptor 5 (DR5) and down-regulation of c-FLIP. Cancer Letters 279, 185-192, https://doi.org/10.1016/j.canlet.2009.01.035 (2009).
21. Floratos, A., Smith K., Ji Z., Watkinson J., & Califano A. geWorkbench: an open source platform for integrative genomics. Bioinformatics 26, 1779-1780, https://doi.org/10.1093/bioinformatics/btq282 (2010).
22. Barrans, S. L., et al. Whole genome expression profiling based on paraffin embedded tissue can be used to classify diffuse large B-cell lymphoma and predict clinical outcome. British Journal of Haematology 159, 441-453, https://doi.org/10.1111/bjh.12045 (2012).
23. Zamani-Ahmadmahmudi, M., Nassiri S. M., & Soltaninezhad F. Development of an RNA sequencing-based prognostic gene signature in multiple myeloma. British Journal of Haematology 192, 310-321, https://doi.org/10.1111/bjh.16744 (2021).
24. Zamani-Ahmadmahmudi, M., Dabiri S., & Nadimi N. Identification of pathway-based prognostic gene signatures in patients with multiple myeloma. Translational Research: The Journal of Laboratory and Clinical Medicine 185, 47-57, https://doi.org/10.1016/j.trsl.2017.05.001 (2017).
25. Sehn, L. H., & Gascoyne R. D. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood 125, 22-32, https://doi.org/10.1182/blood-2014-05-577189 (2015).
26. Tsuyama, N., et al. BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood 130, 489-500, https://doi.org/10.1182/blood-2016-12-759621 (2017).
27. Iqbal, J., et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 24, 961-968, https://doi.org/10.1200/jco.2005.03.4264 (2006).
28. Iqbal, J., et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. The American Journal of Pathology 165, 159-166, (2004).
29. Papasouliotis, K., et al. Comparison of white blood cell differential percentages determined by the in-house LaserCyte hematology analyzer and a manual method. Veterinary Clinical Pathology 35, 295-302, (2006).
30. Wang, K., et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research 17, 1665-1674, https://doi.org/10.1101/gr.6861907 (2007).
31. Bouska, A., et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 123, 1681-1690, https://doi.org/10.1182/blood-2013-05-500595 (2014).