1. John H, Neill Mc, Violet G, Yuen, Soter Dai , Chris Orvig (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180. https://doi.org/10.1007/BF01075935.
2. Ding F, Zhao GY, Huang JL, Zhang L, (2009) Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur. J. Med. Chem 44:4083-4089. https://doi.org/10.1016/j.ejmech.2009.04.047
3. Gregory Huyer, Susana Liu, John Kelly, Jason Moffat, Paul Payette, Brian Kennedy, George Tsaprailis, Michael J, Gresser and Chidambaram Ramachandran(1997) Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate, The Journal of Biological Chemistry 272:843-851. https://doi.org/10.1074/jbc.272.2.843.
4. Elisa B, Kshetrimayum B S, Alberto M, Christer H (2016) The metal face of protein tyrosine phosphatase 1B. Coordination Chemistry Reviews 327–328: 70-83. https://doi.org/10.1016/j.ccr.2016.07.002.
5. Sanchez-Gonzalez C, Bermudez-Peña C, Guerrero-Romero F, Trenzado CE , Montes- Bayon M , Sanz-Medel A and Llopis J(2011) Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats. The British Journal of Nutrition 108(5):893-899. https://doi.org/10.1017/S0007114511006131.
6. Lucy Marzban and John H. McNeill (2003) Insulin‐like actions of vanadium: Potential as a therapeutic agent. J trace elem exp med 16:253-267. https://doi.org/10.1002/jtra.10034
7. Belinda S, and Connell O (2001) Select Vitamins and Minerals in the Management of Diabetes. Diabetes Spectrum 14(3):133-148. https://doi.org/10.2337/diaspect.14.3.133
8. Boden G, Chen X, Ruiz J, van Rossum and GD, Turco S (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 45(9):1130-3. doi: 10.1016/s0026-0495(96)90013-x.
9. Cohen N, Halberstam M, Shlimovich P, Chang C J, Shamoon H, Rossetti L(1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95(6):2501–2509. doi: 10.1172/JCI117951.
10. Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral Vanadyl Sulfate Improves Insulin Sensitivity in NIDDM but Not in Obese Nondiabetic Subjects. Diabetes 45(5):659-666. DOI: 10.2337/diab.45.5.659
11. Goldfine A B, Simonson D C, Folli F, Patti M E, Kahn C R (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80(11):3311–3320. doi: 10.1210/jcem.80.11.7593444.
12. Korbecki J, Baranowska-Bosiacka I, Gutowska I, and Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195-200. PMID: 22693688
13. Liping Lu, Sulian Wang, Miaoli Zhu, Zhiwei Liu, Maolin Guo, and Shu XingXueqi Fu (2010) Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). BioMetals 23(6):1139–1147. DOI:10.1007/s10534-010-9363-8
14. Kathleen A, Kenner, Ezenta Anyanwu, Jerrold M, Olefsky, Jyotirmoy Kusari (1996) Protein-tyrosine Phosphatase 1B Is a Negative Regulator of Insulin- and Insulin-like Growth Factor-I-stimulated Signaling. The Journal of Biological Chemistry 271:19810-19816. https://doi.org/10.1074/jbc.271.33.19810.
15. Byon JC, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem. 182(1-2):101-8. PMID: 9609119.
16. Ayub Sk, Vani K, Rambabu A, Vijjulatha M, Sree Kanth S ,
Deva Das M (2021) Interaction of vanadium metal complexes with protein tyrosine
phosphatase-1B enzyme along with identifcation of active site of enzyme
by molecular modeling. Inorg.Chem.Commun.126:108499. https://doi.org/10.1016/j.inoche.2021.108499.
17. Ayub S, Vani K, Rambabu A, Vemulapalli L, Das M (2022) Vanadium metal complexes' inhibition studies on enzyme PTP-1B and antidiabetic activity studies on Wistar rats. Appl organo met Chem 36(7):e6710. https://doi.org/10.1002/aoc.6710.
18. Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadeh H (2014) DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048
19. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B Biointerface 72:167-72. DOI: 10.1016/j.colsurfb.2009.03.030
20. Lakowicz JR, 3rd edn, Principles of fluorescence spectroscopy, Springer, Newyork, 1999.
21. Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadh H (2014) DNA- and BSA- binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectro chimica Acta Part A: Molecular and Biomolecular Spectroscopy 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048
22. Katherine H, Thompson, Jay Lichter, Carl Le Bel, Michael C, Scaife (2009) Journal of Inorganic Biochemistry 103:4554-558.
23. Liping Lu, Sulian Wang, Miaoli Zhu, Zhiwei Liu, Maolin Guo, Shu Xing, Xueqi Fu(2010) Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH )](Glu 5 glutamate). Biometals 23:1139–1147 DOI 10.1007/s10534- 010-9363-8
24. Wang H Y, Zhang M, Lu QL, Yue NN, Gong B (2009) Spectrochim.Acta, Part A 7:682.
25. Ding F, Zhao G.Y, Huang J L, and Zhang L (2009) Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur. J. med. Chem 44:4083-4089. https://doi.org/10.1016/j.ejmech.2009.04.047
26. Miller, J.N. Recent advances in molecular luminescence analysis (1979) Proc. Anal. Div. Chem. Soc. 16:203–208.
27. Korbecki J, Baranowska-Bosiacka I, Gutowska D, Chlubek (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 59:195–200. PMID: 22693688.
28. Qingming Wang, Liping Lu, Caixia Yuan, Kai Pei, Zhiwei Liu, Maolin Guo and Miaoli Zhu (2010) Potent inhibition of protein tyrosine phosphatase 1B by copper complexes: implications for copper toxicity in biological systems. Chem. Commun, 46:3547–3549.
29. Yuan C, Lu L, Gao X, Wu Y, Zhu M, (2009) Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities Caixia. J Biol Inorg Chem 14:841–851. DOI 10.1007/s00775-009-0496-6.
30. Montalibet J, Skorey KI, Kennedy BP (2005) Protein tyrosine phosphatase: enzymatic assays. Methods. 35:2-8. doi: 10.1016/j.ymeth.2004.07.002.
31. Ranaldi F, Vanni P, Giachetti E (2010) what students must know about the determination of enzyme kinetic parameters. Biochem. Educ.27:87–91. https://doi.org/10.1016/S0307-4412(98)00301-X
32. Lakowic, J.R., 3rd edition, Principle of fluorescence spectroscopy, Spinger (1999), Newyork.
33. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B Biointerface 72:167-72. DOI: 10.1016/j.colsurfb.2009.03.030
34. Sathyadevi P, Krishnamoorthy P, Butorac RR, Cowley AH, Bhuvanesh NS, Dharmaraj N (2011). Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(II) complexes: a systematic investigation. Dalton Trans. 40(38):9690-702. doi: 10.1039/c1dt10767d.
35. Whiteley CG (2010) Enzyme kinetics: partial and complete uncompetitive inhibition. Biochem. Educ. 28:144–147. https://doi.org/10.1111/j.1539-3429.2000.tb00050.x
36. Qiong-You Wu, Li-Li Jiang, Sheng-Gang Yang, Yang Zuo, Zhi-Fang Wang, Zhen Xi Guang-Fu Yang (2014) Hexahydrophthalimide–benzothiazole hybrids as a new class of protoporphyrinogen oxidase inhibitors: synthesis, structure–activity relationship, and DFT calculations. New J. Chem.38:4510–4518. https://doi.org/10.1039/C4NJ00636D.
37. Berg JM, Tymoczko JL, Stryer L, Biochemistry, 5thedition, ISBN-10:0-7167-3051-0.
38. Engelking L R (2015) Enzyme Kinetics. Veterinary Physiological Chemistry 32–38.
39. Molegro, A. (2011) “MVD 5.0 Molegro Virtual Docker. “DK-8000 Aarhus C, Denmark.
40. Liu L, Ma H, Yang N, Tang Y, Guo J, Tao W ) (2010) A series of natural flavonoids as thrombin inhibitors: structure-activity relationships. J. Thromb Res 126:5365-378.
41. Shaik A, Thumma V, Kotha AK, Kramadhati S, Pochampally J, Bandi S (2016) Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids. Bioinformation 12(12):425-429. doi: 10.6026/97320630012425.
42. Rajeshwari K, Vasantha P, Sathish Kumar B, Anantha Lakshmi PV (2022) Nickel–Metformin Ternary Complexes: Geometrical, Thermal, DNA Binding, and Molecular Docking Studies. Biological Trace Element Research 200:5351–5364. https://doi.org/10.1007/s12011-022-03100-1.
43. Krishnan N, Krishnan K, Connors CR, Choy MS, Page R, Peti W, Van Aelst L, Shea SD, Tonks NK(2015) PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 125(8):3163-77. doi: 10.1172/JCI80323.
44. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785-91. doi: 10.1002/jcc.21256.
45. Ayub Sk, Vani K, Rambabu A, Deva Das M (2022) Studies on the serum glucose reducing effect of vanadium metal complexes on Wistar rats. Journal of Molecular Structure 1261:132825. https://doi.org/10.1016/j.molstruc.2022.132825.