Alves RJ, Bienert R, Grimm C, Bergmaier D (2014) Real time in-line monitoring of large scale Bacillus fermentations with near-infrared spectroscopy. J Biotechnol 189:120-128
Beatriz MRK, Figueroa VN, Arturo IHC, Cardona AM, Antonio BGJ, Kornhauser C, Manuel MJ, Flores RR, Javier PVF (2020) Identification of metabolic markers in patients with type 2 diabetes by ultrafast gas chromatography coupled to electronic nose. A pilot study. Biomed Chromatogr 34(12): e4956
Bhattacharyya N, Seth S, Tudu B, Tamuly P, Jana A, Ghosh D, Bandyopadhyay R, Bhuyan M (2007) Monitoring of black tea fermentation process using electronic nose. J Food Eng 80(4):1146-1156
Buratti S, Ballabio D, Giovanelli G, Zuluanga DCM, Moles A, Benedetti S, Sinelli N (2011) Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Anal Chim Acta 697(1-2):67-74
Burphan T, Tatip S, Limcharoensuk T, Kangboonruang K, Boonchird C, Auesukaree C (2018) Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 8:13069.
Dekker L, Polizzi KM (2017) Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors. Curr Opin Chem Biol 40:31-36
Garcia-Martinez T, Bellincontro A, de Lerma MDL, Peinado RA, Mauricio JC, Mencarelli F, Moreno JJ (2018) Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose. Food Chem 127(3):1391-1396
Guo Q, Chu J, Zhuang Y, Gao Y (2016) Controlling the feed rate of propanol to optimize erythromycin fermentation by on-line capacitance and oxygen uptake rate measurement. Bioproc Biosyst Eng 39(2):255-265
Horta ACL, da Silva AJ, Sargo CR, Cavalcanti-Montano ID, Galeano-Suarez CA, Velez AM, Santos MP, Goncalves VM, Giordano RC, Zangirolami TC (2015) On-line monitoring of biomass concentration based on a capacitance sensor: assessing the methodology for different bacteria and yeast high cell density fed-batch cultures. Braz J Chem Eng 32(4):821-829
Jagtap RS, Mahajan DM, Mistry SR, Bilaiya M, Singh RK, Jain R (2019) Improving ethanol yields in sugarcane molasses fermentation by engineering the high osmolarity glycerol pathway while maintaining osmotolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 103:1031–1042.
Ji H, Yu J, Zhang X, Tan T (2012) Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Appl Biochem Biotech 168(1):21-28
Kedia G, Passanha P, Dinsdale RM, Guwy AJ, Lee M, Esteves SR (2013) Addressing the challenge of optimum polyhydroxyalkanoate harvesting: Monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy. Bioresource Technol 134:143-150
Khongsay N, Laopaiboon L, Jaisil P, Laopaiboon P (2012) Optimization of Agitation and Aeration for Very High Gravity Ethanol Fermentation from Sweet Sorghum Juice by Saccharomyces Cerevisiae Using an Orthogonal Array Design. Energies 5(3): 561-576
Kroll P, Stelzer IV, Herwig C (2017) Soft sensor for monitoring biomass subpopulations in mammalian cell culture processes. Biotechnol Lett 39(11): 1667-1673.
Li K, Xia J, Mehmood MA, Zhao XQ, Liu CG, Bai FW (2019) Extracellular redox potential regulation improves yeast tolerance to furfural. Chem Eng Sci 196:54-63
Li L, Wang ZJ, Chen XJ, Chu J, Zhuang YP, Zhang SL (2014) Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement. Bioresource Technol 156:216-221
Liu CG, Xue C, Lin YH, Bai FW (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257-265
Liu K, Yuan X, Liang LM, Fang JP, Chen YQ, He WJ, Xue T (2019) Using CRISPR/Cas9 for multiplex genome engineering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae. Biochem Eng J 145:120-126
Naghshbandi MP, Tabatabaei M, Aghbashlo M, Gupta VK, Sulaiman A, Karimi K, Moghimi H, Maleki M (2019) Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renew Sust Energ Rev 115:109353.
Nascimento RJA, de Macedo GR, dos Santos ES, de Oliveira JA (2017) Real time and in situ Near-Infrared Spectroscopy (NIRS) for Quantitative Monitoring of Biomass, Glucose, Ethanol and Glycerine concentrations in an alcoholic fermentation. Braz J Chem Eng 34(2):459-468
Park SW, Lee SJ, Sim YS, Choi JY, Park EY, Noh BS (2017) Analysis of ethanol in soy sauce using electronic nose for halal food certification. Food Sci Biotechnol 26(2):311-317
Pinto ASS, Pereira SC, Ribeiro MPA, Farinas CS (2016) Monitoring of the cellulosic ethanol fermentation process by near-infrared spectroscopy. Bioresource Technol 203:334-340
Raspagliesi F, Bogani G, Benedetti S, Grassi S, Ferla S, Buratti S (2020) Detection of ovarian cancer through exhaled breath by electronic nose: A prospective study. Cancers 12(9):2408-2420
Rehman O, Shahid A, Liu CG, Xu JR, Javed MR, Eid NH, Gull M, Nawaz M, Mehmood MA (2019) Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae. Biomass Convers Bior 10(4):1269-1278
Sabater-Munoz B, Mattenberger F, Fares MA, Toft C (2020) Transcriptional rewiring, adaptation, and the role of gene duplication in the metabolism of ethanol of Saccharomyces cerevisiae. mSystems 5(4):e00416-20
Taiwo AE, Madzimbamuto TN, Ojumu TV (2018) Optimization of Corn Steep Liquor Dosage and Other Fermentation Parameters for Ethanol Production by Saccharomyces cerevisiae Type 1 and Anchor Instant Yeast. Energies 11 (7):20
Tsai SY, Hsu YC, Shu CM, Lin KH, Lin CP (2020) Synchronization of isothermal calorimetry and liquid cultivation identifying the beneficial conditions for producing ethanol by yeast Saccharomyces cerevisiae fermentation. J Therm Anal Calorim 142 (2):829-840
Wang ZJ, Zhang W, Zhang JW, Guo MJ, Zhuang YP (2016) Optimization of a broth conductivity controlling strategy directed by an online viable biomass sensor for enhancing Taxus cell growth rate and Taxol productivity. RSC Advances 6 (47):40631-40640
Wisniewska P, Sliwinska M, Dymerski T, Wardencki W, Namiesnik J (2015) The Analysis of Vodka: A review paper. Food Anal Method 8(8):2000-2010
Wu RZ, Chen D, Cao SW, Lu ZL, Huang J, Lu Q, Chen Y, Chen XL, Guan N, Wei YT, Huang RB (2020) Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Advances 10(4):2267-2276.
Xiong ZQ, Guo MJ, Guo YX, Chu J, Zhuang YP, Zhang SL (2008) Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng 105(4):409-413
Zeiser A, Bedard C, Voyer R, Jardin B, Tom R, Kamen AA (1999) On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol and Bioeng 63(1):122-126
Zhang Q, Wu D, Lin Y, Wang X, Kong H, Tanaka S (2015) Substrate and product inhibition on yeast performance in ethanol fermentation. Energ Fuel 29(2):1019-1027
Zhang Y, Lin YH (2020) Metabolic flux analysis of Saccharomyces cerevisiae during redox potential-controlled very high-gravity ethanol fermentation. Biotechnol Appl Bioc 67(1):140-147
Zhao HT, Pang KY, Lin WL, Wang ZJ, Gao DQ, Guo MJ, Zhuang YP (2016) Optimization of the n-propanol concentration and feedback control strategy with electronic nose in erythromycin fermentation processes. Process Biochem 51(2):195-203