Barboza LGA, Vethaak AD, Lavorante B, Lundebye AK, Guilhermino L (2018) Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336-348. https://doi.org/10.1016/j.marpolbul.2018.05.047.
Cheng Q, Chang C, Zhang L (2016) Progress in tunicate cellulose based advanced functional materials. Sci Sin Chim 46:438-451. https://doi.org/10.1360/n032015-00265.
Cheng Q, Ye D, Chang C, Zhang L (2017) Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J Membr Sci 525:1-8. https://doi.org/10.1016/j.memsci.2016.11.084.
Cheng Q, Ye D, Yang W, Zhang S, Chen H, Chang C, Zhang L (2018) Construction of Transparent Cellulose-Based Nanocomposite Papers and Potential Application in Flexible Solar Cells. ACS Sustainable Chem Eng 6:8040-8047. https://doi.org/10.1021/acssuschemeng.8b01599.
French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20: 583-588. https://doi.org/10.1007/s10570-012-9833-y.
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885-896. https://doi.org/10.1007/s10570-013-0030-4.
French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445-5448. https://doi.org/10.1007/s10570-020-03172-z.
Gao X, Huang L, Wang B, Xu D, Zhong J, Hu Z, Zhang L, Zhou J (2016) Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. ACS Appl Mater Interfaces 8:35587-35592. https://doi.org/10.1021/acsami.6b12913.
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv, 3:e1700782. https://doi.org/10.1126/sciadv.1700782.
Hu W, Fang Z, Liu Y, Zhou Y, Kuang Y, Ning H, Li B, Chen G, Liu Y (2018) Protonation Process to Enhance the Water Resistance of Transparent and Hazy Paper. Acs Sustainable Chem Eng 6:12385-12392. https://doi.org/10.1021/acssuschemeng.8b02900.
Huang S, Liu X, Chang C, Wang Y (2020) Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27:2991-3011. https://doi.org/10.1007/s10570-020-02984-3.
Jia C, Li T, Chen CJ, Dai J, Kierzewski I, Song J, Li Y, Yang C, Wang C, Hu L (2017) Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36:366-373. https://doi.org/10.1016/j.nanoen.2017.04.059.
Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J, Hitz E, Hu L (2018) Wood-Based Nanotechnologies toward Sustainability. Adv Mater 30:e1703453. https://doi.org/10.1002/adma.201703453.
Jung Y, Chang T, Zhang H, Yao C, Zheng Q, Yang V, Mi H, Kim M, Cho S, Park D, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170. https://doi.org/10.1038/ncomms8170.
Keplinger T, Wittel FK, Ruggeberg M, Burgert I (2020) Wood Derived Cellulose Scaffolds-Processing and Mechanics. Adv Mater e2001375. https://doi.org/10.1002/adma.202001375.
Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358-3393. https://doi.org/10.1002/anie.200460587.
Koppolu R, Lahti J, Abitbol T, Swerin A, Kuusipalo J, Toivakka M (2019) Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings. ACS Appl Mater Interfaces 11:11920-11927. https://doi.org/10.1021/acsami.9b00922.
Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Luo W, Pastel G, Yang B, Hu L (2016) Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Adv Energy Mater 6:e1601122. https://doi.org/10.1002/aenm.201601122.
Li T, Song J, Zhao X, Yang Z, Pastel G, Xu S, Jia C, Dai J, Chen C, Gong A, Jiang F, Yao Y, Fan T, Yang B, Wagberg L, Yang R, Hu L (2018) Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci Adv 4:eaar3724. https://doi.org/10.1126/sciadv.aar3724.
Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Ailli A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L (2019) A radiative cooling structural material. Science 364:760-763. https://doi.org/10.1126/science.aau9101.
Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Edwards JV, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305-328. https://doi.org/10.1007/s10570-018-02230-x.
Mohanty A, Vivekanandhan S, Pin J, Misra M (2018) Composites from renewable and sustainable resources: Challenges and innovations. Science 362:536-542. https://doi.org/10.1126/science.aat9072.
Nakashima K, Sugiyama J, Satoh N (2008) A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genom 1:9-14. https://doi.org/10.1016/j.margen.2008.01.001.
Peng N, Huang D, Gong C, Wang Y, Zhou J, Chang C (2020) Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. ACS Nano 14:16169-16179. https://doi.org/10.1021/acsnano.0c08906.
Quero F, Opazo G, Zhao Y, Feschotte-Parazon A, Fernandez J, Quintro A, Flores M (2018) Top-down Approach to Produce Protein Functionalized and Highly Thermally Stable Cellulose Fibrils. Biomacromolecules 19:3549-3559. https://doi.org/10.1021/acs.biomac.8b00831.
Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Tech 19:634-643. https://doi.org/10.1016/j.tifs.2008.07.003.
Wang J, Li X, Cheng Q, Lv F, Chang C, Zhang L (2020) Construction of beta-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohyd Polym 229:115470. https://doi.org/10.1016/j.carbpol.2019.115470.
Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L (2017) Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Adv Mater 29:e1702498. https://doi.org/10.1002/adma.201702498.
Wang S, Li T, Chen C, Kong W, Zhu S, Dai J, Diaz A, Hitz E, Solares S, Hu L (2018) Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Adv Funct Mater 28:e1707491. https://doi.org/10.1002/adfm.201707491.
Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L (2019) Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano 13:4843-4853. https://doi.org/10.1021/acsnano.9b02081.
Zhan H, Peng N, Lei X, Huang Y, Li D, Tao R, Chang C (2018) UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohyd Polym 201:464-470. https://doi.org/10.1016/j.carbpol.2018.08.093.
Zhan H, Zuo T, Tao R, Chang C (2018) Robust Tunicate Cellulose Nanocrystal/Palygorskite Nanorod Membranes for Multifunctional Oil/Water Emulsion Separation. ACS Sustainable Chem Eng 6:10833-10840. https://doi.org/10.1021/acssuschemeng.8b02137.
Zhang T, Zuo T, Hu D, Chang C (2017) Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. ACS Appl Mater Interfaces 9:24230-24237. https://doi.org/10.1021/acsami.7b06219.
Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427-3441. https://doi.org/10.1007/s10570-014-0348-6.
Zhao Y, Moser C, Henriksson G (2018) Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester. ChemSusChem 11:1728-1735. https://doi.org/10.1002/cssc.201800627.
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel M, Hu L (2016a) Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem Rev 116:9305-9374. https://doi.org/10.1021/acs.chemrev.6b00225.
Zhu M, Li T, Davis C, Yao Y, Dai J, Wang Y, AlQatari F, Gilman J, Hu L (2016b) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332-339. https://doi.org/10.1016/j.nanoen.2016.05.020.
Zhu M, Wang Y, Zhu S, Xu L, Jia C, Dai J, Song J, Yao Y, Wang Y, Li Y, Henderson D, Luo, W, Li H, Minus M, Li T, Hu L (2017) Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Adv Mater 29:e1606284. https://doi.org/10.1002/adma.201606284.
Zhu M, Jia C, Wang Y, Fang Z, Dai J, Xu L, Huang D, Wu J, Li Y, Song J, Yao Y, Hitz E, Wang Y, Hu L (2018) Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. ACS Appl Mater Interfaces 10:28566-28571. https://doi.org/10.1021/acsami.8b08055.