Adams BT, Matthews SN. Enhancing Forest and Shrubland Mapping in a Managed Forest Landscape with Landsat-LiDAR Data Fusion. Natural Areas Journal 2018; 38: 402-418.
Adelabu S, Mutanga O, Adam E, Cho MA. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. Journal of Applied Remote Sensing 2013; 7.
Agarwal S, Vailshery LS, Jaganmohan M, Nagendra H. Mapping Urban Tree Species Using Very High Resolution Satellite Imagery: Comparing Pixel-Based and Object-Based Approaches. Isprs International Journal of Geo-Information 2013; 2: 220-236.
Apostol B, Petrila M, Lorent A, Ciceu A, Gancz V, Badea O. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery. Science of the Total Environment 2020; 698.
Ball JE, Anderson DT, Chan CS. Feature and Deep Learning in Remote Sensing Applications. Journal of Applied Remote Sensing 2018; 11.
Ballanti L, Blesius L, Hines E, Kruse B. Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers. Remote Sensing 2016; 8.
Blaschke T. Object based image analysis for remote sensing. Isprs Journal of Photogrammetry and Remote Sensing 2010; 65: 2-16.
Burai P, Beko L, Lenart C, Tomor T, Kovacs Z, Ieee. INDIVIDUAL TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL IMAGERY AND LIDAR DATA. 2019 10th Workshop on Hyperspectral Imaging and Signal Processing - Evolution in Remote Sensing, 2019.
Chowdhury S, Peddle DR, Wulder MA, Heckbert S, Shipman TC, Chao DK. Estimation of land-use/land-cover changes associated with energy footprints and other disturbance agents in the Upper Peace Region of Alberta Canada from 1985 to 2015 using Landsat data. International Journal of Applied Earth Observation and Geoinformation 2021; 94.
Clevers JGPW, Jong H, Epema GF, Meer, Bakker W, Skidmore A, et al. The use of the MERIS standard band setting for deriving the red edge index. In: Proc. of the ISSSR International Symposium "Sensors and Systems for the new Millennium. Las Vegas, Oct 31 - Nov, 5, 1999. - [S.l.] : [s.n.], 2000 2000.
Crippen RE. CALCULATING THE VEGETATION INDEX FASTER. Remote Sensing of Environment 1990; 34: 71-73.
Dalponte M, Frizzera L, Gianelle D. Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. Peerj 2019; 6.
Dash J, Curran PJ. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing 2004; 25: 5403-5413.
dos Santos AA, Marcato J, Araujo MS, Di Martini DR, Tetila EC, Siqueira HL, et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019; 19.
Dudley KL, Dennison PE, Roth KL, Roberts DA, Coates AR. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sensing of Environment 2015; 167: 121-134.
Escadafal R, Girard MC, Courault D. MUNSELL SOIL COLOR AND SOIL REFLECTANCE IN THE VISIBLE SPECTRAL BANDS OF LANDSAT MSS AND TM DATA. Remote Sensing of Environment 1989; 27: 37-46.
Fabian, Ewald, Fassnacht, Hooman, Latifi, Krzysztof, et al. Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment 2016.
Fassnacht FE, Latifi H, Stereńczak K, Modzelewska A, Lefsky M, Waser LT, et al. Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment 2016; 186: 64-87.
Franklin SE, Ahmed OS. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. International Journal of Remote Sensing 2018; 39: 5236-5245.
Fricker GA, Ventura JD, Wolf JA, North MP, Davis FW, Franklin J. A Convolutional Neural Network Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral Imagery. Remote Sensing 2019; 11.
George R, Padalia H, Kushwaha SPS. Forest tree species discrimination in western Himalaya using EO-1 Hyperion. International Journal of Applied Earth Observation and Geoinformation 2014; 28: 140-149.
Ghosh A, Fassnacht FE, Joshi PK, Koch B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation 2014; 26: 49-63.
Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 1996; 58: 289-298.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 2017; 202: 18-27.
Grabska E, Hostert P, Pflugmacher D, Ostapowicz K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sensing 2019; 11: 1197.
Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, et al. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment 2014; 151: 72-88.
Guyot G, Frederic B, Major D. High spectral resolution: Determination of spectral shifts between the red and the near infrared. International Archives of Photogrammetry and Remote Sensing 1988; 11: 750-760.
Hartling S, Sagan V, Sidike P, Maimaitijiang M, Carron J. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Sensors 2019; 19.
Hobbs RJ, Wallace JF, Campbell NA. CLASSIFICATION OF VEGETATION IN THE WESTERN AUSTRALIAN WHEATBELT USING LANDSAT MSS DATA. Vegetatio 1989; 80: 91-105.
Hoscilo A, Lewandowska A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sensing 2019; 11: 23.
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 2002; 83: 195-213.
Immitzer M, Bock S, Einzmann K, Vuolo F, Pinnel N, Wallner A, et al. Fractional cover mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite imagery. Remote Sensing of Environment 2018; 204: 690-703.
Immitzer M, Vuolo F, Atzberger C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing 2016; 8.
Karlson M, Ostwald M, Reese H, Bazie HR, Tankoano B. Assessing the potential of multi-seasonal WorldView-2 imagery for mapping West African agroforestry tree species. International Journal of Applied Earth Observation and Geoinformation 2016; 50: 80-88.
Khairuddin B, Yulianda F, Kusmana C, Yonvitner. Degradation mangrove by using Landsat 5 TM and Landsat 8 OLI image in Mempawah Regency, West Kalimantan Province year 1989-2014. In: Setiawan Y, Prasetyo LB, Siregar IZ, Effendi H, editors. 2nd International Symposium on Lapan-Ipb Satellite. 33, 2016, pp. 460-464.
Kumar L, Mutanga O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing 2018; 10.
Liu YA, Gong WS, Hu XY, Gong JY. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sensing 2018; 10: 25.
Long JB, Giri C. Mapping the Philippines' Mangrove Forests Using Landsat Imagery. Sensors 2011; 11: 2972-2981.
Lv J, Ma T. Discrimination of tree species using random forests from the Chinese high-resolution remote sensing satellite GF-1. In: Liu W, Wang J, editors. Hyperspectral Remote Sensing Applications and Environmental Monitoring and Safety Testing Technology. 10156, 2016.
Michez A, Piegay H, Lisein J, Claessens H, Lejeune P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment 2016; 188.
Mickelson JG, Civco DL, Silander JA. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogrammetric Engineering and Remote Sensing 1998; 64: 891-904.
Misra G, Cawkwell F, Wingler A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing 2020; 12.
Mutanga O, Kumar L. Google Earth Engine Applications. Remote Sensing 2019; 11.
Nezami S, Khoramshahi E, Nevalainen O, Polonen I, Honkavaara E. Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks. Remote Sensing 2020; 12.
Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment 2014; 148: 42-57.
Permana DS, Nakajima T, Yuasa T, Akatsuka T. A vegetation classification method with a spectral, spatial and temporal variability for Landsat/TM imagery. In: Tescher AG, editor. Applications of Digital Image Processing Xxi. 3460, 1998, pp. 834-843.
Raczko E, Zagajewski B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of Remote Sensing 2017; 50: 144-154.
Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K. Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape and Ecological Engineering 2012; 8: 157-171.
Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, et al. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. Isprs Journal of Photogrammetry and Remote Sensing 2020; 170: 205-215.
Senseman G, Tweddale S, Anderson A, Bagley C. Correlation of Land Condition Trend Analysis (LCTA) Rangeland Cover Measures to Satellite-Imagery-Derived Vegetation Indices. 1996: 33.
Shi YF, Wang TJ, Skidmore AK, Heurich M. Important LiDAR metrics for discriminating forest tree species in Central Europe. Isprs Journal of Photogrammetry and Remote Sensing 2018; 137: 163-174.
Shukla A, Kot R. An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines. IRA-International Journal of Applied Sciences (ISSN 2455-4499) 2016; 5: 85.
Soares VP, Hoffer RM. EUCALYPTUS FOREST CHANGE CLASSIFICATION USING MULTI-DATE LANDSAT TM DATA. Vol 2314, 1995.
Srinet R, Nandy S, Padalia H, Ghosh S, Watham T, Patel NR, et al. Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. International Journal of Remote Sensing 2020; 41: 1-14.
Townshend JR, Masek JG, Huang CQ, Vermote EF, Gao F, Channan S, et al. Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. International Journal of Digital Earth 2012; 5: 373-397.
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution 2003; 18: 306-314.
Van Coillie FMB, Liao W, Kempeneers W, Vandekerkhove K, Gautama S, Philips W, et al. OPTIMIZED FEATURE FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR TREE SPECIES MAPPING IN CLOSED FOREST CANOPIES. 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2015.
Venkatappa M, Sasaki N, Anantsuksomsri S, Smith B. Applications of the Google Earth Engine and Phenology-Based Threshold Classification Method for Mapping Forest Cover and Carbon Stock Changes in Siem Reap Province, Cambodia. Remote Sensing 2020; 12.
Wang DZ, Wan B, Qiu PH, Su YJ, Guo QH, Wu XC. Artificial Mangrove Species Mapping Using Pleiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sensing 2018; 10.
Wang KP, Wang TJ, Liu XH. A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical Imagery with a Focus on the Urban Environment. Forests 2019; 10.
Wangda P, Hussin YA, Bronsveld MC, Karna YK. Species stratification and upscaling of forest carbon estimates to landscape scale using GeoEye-1 image and lidar data in sub-tropical forests of Nepal. International Journal of Remote Sensing 2019; 40: 7941-7965.
Wessel M, Brandmeier M, Tiede D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sensing 2018; 10: 21.
Wu Q. geemap: A Python package for interactive mapping with Google Earth Engine. Journal of Open Source Software 2020; 5: 2305.
Wu YS, Zhang XL. Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data. Forests 2020; 11.
Xi ZX, Hopkinson C, Rood SB, Peddle DR. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning. Isprs Journal of Photogrammetry and Remote Sensing 2020; 168: 1-16.
Xie B, Cao C, Xu M, Bashir B, Singh RP, Huang Z, et al. Regional Forest Volume Estimation by Expanding LiDAR Samples Using Multi-Sensor Satellite Data. Remote Sensing 2020; 12: 360.
Xie YC, Sha ZY, Yu M. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 2008; 1: 9-23.
Yang AX, Zhong B, Wu JH, Ieee. Monitoring winter wheat in ShanDong province using Sentinel data and Google Earth Engine platform, 2019.
Yang XH, Rochdi N, Zhang JK, Banting J, Rolfson D, King C, et al. MAPPING TREE SPECIES IN A BOREAL FOREST AREA USING RAPIDEYE AND LIDAR DATA. 2014 Ieee International Geoscience and Remote Sensing Symposium, 2014.
Zhang B, Zhao L, Zhang XL. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sensing of Environment 2020; 247.
Zhang HK, Roy DP. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment 2017; 197: 15-34.
Zhao YY, Feng DL, Jayaraman D, Belay D, Sebrala H, Ngugi J, et al. Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery. International Journal of Applied Earth Observation and Geoinformation 2018; 66: 116-125.