The current study is done to study the effect of the Hanning and Connes amplitude filter on the optical system which is under the combined influence of high Seidel aberration and maximum defect of focus. The Connes filter is placed in the inner zone and Hanning filter is placed in the outer zone of the two zone pupil of the apodised optical system. The point spread function is subjected to a higher degree of defocusing and primary, secondary and tertiary wave aberration effect. The general expression for diffraction field of two amplitude filters is given by:
$${S}\left({Z}\right)=2{\int }_{0}^{{a}}{{f}}_{1}\left({x}\right){{J}}_{0}\left({Z}{x}\right){x}{d}{x}+2{\int }_{{a}}^{1}{{f}}_{2}\left({x}\right){{J}}_{0}\left({Z}{x}\right){x}{d}{x}$$
1
Where f1(x) is Connes amplitude pupil function, f2(x) is Hanning amplitude pupil function of the optical system; Z is the dimension less variable which forms the distance of the point of investigation from the centre of the diffraction field; and J0 (Zx) is the zero order Bessel function of the first kind; ‘x’ is the reduced radial coordinate on the exit-pupil of aberrations influenced optical system.
The general expression for Hanning and Connes amplitude mask of the two zone pupil function is written as:
The generalized expression for the amplitude impulse response of the pupil function in the presence of higher degree of primary spherical aberration and defocusing can be written as:
$${S}\left({{\varnothing }}_{{d}},{{\varnothing }}_{{s}}, {Z}\right)=2{\int }_{0}^{{a}}{{f}}_{1}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{4}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}+2{\int }_{{a}}^{1}{{f}}_{2}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{4}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}$$
(2)
in the presence of higher degree of secondary spherical aberration and defocusing can be written as:
$${S}\left({{\varnothing }}_{{d}},{{\varnothing }}_{{s}}, {Z}\right)=2{\int }_{0}^{{a}}{{f}}_{1}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{6}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}+2{\int }_{{a}}^{1}{{f}}_{2}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{6}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}$$
(3)
And in the presence of higher degree of tertiary spherical aberration and defocusing can be written as:
$${S}\left({{\varnothing }}_{{d}},{{\varnothing }}_{{s}}, {Z}\right)=2{\int }_{0}^{{a}}{{f}}_{1}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{8}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}+2{\int }_{{a}}^{1}{{f}}_{2}\left({x}\right)\mathbf{exp}\left[-{i}\left({{\varnothing }}_{{d}}{\frac{{x}}{2}}^{2}+\frac{1}{4}{{\varnothing }}_{{s}}{{x}}^{8}\right)\right]{{J}}_{0}\left({Z}{x}\right){x}{d}{x}$$
(4)
Here Φd, Φs, are the defect-of-focus and the primary, secondary, tertiary spherical aberration parameters respectively. In current study, the pupil functions we have considered are Connes amplitude filter and Hanning filter of second order respectively which can be represented by:
$${{f}}_{1}\left({x}\right)={(1-{{\beta }}^{2}{{x}}^{2})}^{2}$$
5
$${{f}}_{2}\left({x}\right)={c}{o}{s}\left({\pi }{\beta }{x}\right)$$
6
Where ‘β’ is the amplitude apodization parameter controlling the non-uniform transmission of the pupil function.
The intensity PSF I(Z) which is the measurable quantity can be obtained by taking the squared modulus of S(Z). Thus,
$${I}\left({Z}\right)={\left|{S}\left({Z}\right)\right|}^{2}$$
7