1Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506, doi:10.1016/S0140–6736(20)30183–5 (2020).
2Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, doi:10.1001/jama.2020.1585 (2020).
3Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382, 1708–1720, doi:10.1056/NEJMoa2002032 (2020).
4Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523, doi:10.1016/S0140–6736(20)30154–9 (2020).
5Zhou, M., Zhang, X. & Qu, J. Coronavirus disease 2019 (COVID–19): a clinical update. Front Med, doi:10.1007/s11684–020–0767–8 (2020).
6Fan, Y. Y. et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol 154, 1093–1099, doi:10.1007/s00705–009–0409–6 (2009).
7Cameron, M. J., Bermejo-Martin, J. F., Danesh, A., Muller, M. P. & Kelvin, D. J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133, 13–19, doi:10.1016/j.virusres.2007.02.014 (2008).
8Cao, X. COVID–19: immunopathology and its implications for therapy. Nat Rev Immunol, doi:10.1038/s41577–020–0308–3 (2020).
9Li, X., Geng, M., Peng, Y., Meng, L. & Lu, S. Molecular immune pathogenesis and diagnosis of COVID–19. J Pharm Anal, doi:10.1016/j.jpha.2020.03.001 (2020).
10Golonka, R. M. et al. Harnessing Innate Immunity to Eliminate SARS-CoV–2 and Ameliorate COVID–19 Disease. Physiol Genomics, doi:10.1152/physiolgenomics.00033.2020 (2020).
11Wei, L. et al. Viral Invasion and Type I Interferon Response Characterize the Immunophenotypes during Covid–19 Infection. SSRN Electronic Journal DOI: 10.2139/ssrn.3555695 (2020).
12Tu, Y. F. et al. A Review of SARS-CoV–2 and the Ongoing Clinical Trials. Int J Mol Sci 21, doi:10.3390/ijms21072657 (2020).
13Ni, L. et al. Detection of SARS-CoV–2-Specific Humoral and Cellular Immunity in COVID–19 Convalescent Individuals. Immunity, doi:10.1016/j.immuni.2020.04.023 (2020).
14Thevarajan, I. et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID–19. Nat Med 26, 453–455, doi:10.1038/s41591–020–0819–2 (2020).
15Chen, X. et al. Human monoclonal antibodies block the binding of SARS-CoV–2 spike protein to angiotensin converting enzyme 2 receptor. Cell Mol Immunol, doi:10.1038/s41423–020–0426–7 (2020).
16Tan, L. et al. Lymphopenia predicts disease severity of COVID–19: a descriptive and predictive study. medRxiv preprint, doi:https://doi.org/10.1101/2020.03.01.20029074 (2020).
17Zhou, Y. et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BIORxiv preprint doi:https://doi.org/10.1101/2020.02.12.945576 (2020).
18Diao, B. et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID–19). 11, doi:10.3389/fimmu.2020.00827 (2020).
19Janice Oh, H. L., Ken-En Gan, S., Bertoletti, A. & Tan, Y. J. Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 1, e23, doi:10.1038/emi.2012.26 (2012).
20Channappanavar, R., Zhao, J. & Perlman, S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res 59, 118–128, doi:10.1007/s12026–014–8534-z (2014).
21Chen, T. et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID–19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci, doi:10.1093/gerona/glaa089 (2020).
22Zhang, L. et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol 78, 1–8, doi:10.1002/jmv.20499 (2006).
23Zhao, J. et al. Antibody responses to SARS-CoV–2 in patients of novel coronavirus disease 2019. Clin Infect Dis, doi:10.1093/cid/ciaa344 (2020).
24Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, doi:10.1172/jci.insight.123158 (2019).
25Zhang, B. et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID–19. medRxiv preprint, doi:https://doi.org/10.1101/2020.03.12.20035048 (2020).
26Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33, 495–502, doi:10.1038/nbt.3192 (2015).
27Wen, W. et al. Immune cell profiling of COVID–19 patients in the recovery stage by single-cell sequencing. Cell Discov 6, 31, doi:10.1038/s41421–020–0168–9 (2020).
28Brenner, D., Golks, A., Kiefer, F., Krammer, P. H. & Arnold, R. Activation or suppression of NFkappaB by HPK1 determines sensitivity to activation-induced cell death. EMBO J 24, 4279–4290, doi:10.1038/sj.emboj.7600894 (2005).
29Sikora, E. Activation-induced and damage-induced cell death in aging human T cells. Mech Ageing Dev 151, 85–92, doi:10.1016/j.mad.2015.03.011 (2015).
30Shin, S. Y., Kim, M. W., Cho, K. H. & Nguyen, L. K. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 9, 10637, doi:10.1038/s41598–019–46592-z (2019).
31Krammer, P. H., Arnold, R. & Lavrik, I. N. Life and death in peripheral T cells. Nat Rev Immunol 7, 532–542, doi:10.1038/nri2115 (2007).
32Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat Med 23, 18–27, doi:10.1038/nm.4241 (2017).
33King, R. & Tuthill, C. Immune Modulation with Thymosin Alpha 1 Treatment. Vitam Horm 102, 151–178, doi:10.1016/bs.vh.2016.04.003 (2016).
34Liu, J., Ouyang, L. & Guo, P. Epidemiological, Clinical Characteristics and Outcome of Medical Staff Infected with COVID–19 in Wuhan, China: A Retrospective Case Series Analysis. medRxiv preprint, doi:https://doi.org/10.1101/2020.03.09.20033118 (2020).
35Fan, H., Zhang, L. & Huang, B. Retrospective Analysis of Clinical Features in 101 Death Cases with COVID–19. medRxiv preprint, doi:https://doi.org/10.1101/2020.03.09.20033068 (2020).
36Cao, W. et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infectious Diseases 7, doi:10.1093/ofid/ofaa102 (2020).
37Galeotti, C., Kaveri, S. V. & Bayry, J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 29, 491–498, doi:10.1093/intimm/dxx039 (2017).
38Hartung, H. P. Advances in the understanding of the mechanism of action of IVIg. J Neurol 255 Suppl 3, 3–6, doi:10.1007/s00415–008–3002–0 (2008).