Amanidaz, N., Zafarzadeh, A., & Mahvi, A. H. (2015). The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks. Iranian Journal of Public Health, 44(12), 1685. /pmc/articles/PMC4724742/
Anderson, K. L., Whitlock, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71(6), 3041–3048. https://doi.org/10.1128/AEM.71.6.3041-3048.2005
Brunet, N. N., & Westbrook, C. J. (2012). Wetland drainage in the Canadian prairies: Nutrient, salt and bacteria characteristics. Agriculture, Ecosystems and Environment, 146(1), 1–12. https://doi.org/10.1016/j.agee.2011.09.010
Byappanahalli, M. N., Whitman, R. L., Shively, D. A., Sadowsky, M. J., & Ishii, S. (2006). Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environmental Microbiology, 8(3), 504–513. https://doi.org/10.1111/J.1462-2920.2005.00916.X
Chudoba, E. A., Mallin, M. A., Cahoon, L. B., & Skrabal, S. A. (2013). Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus. Water Research, 47(10), 3455–3466. https://doi.org/10.1016/J.WATRES.2013.03.047
Clairmont, L. K., Coristine, A., Stevens, K. J., & Slawson, R. M. (2021). Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. Journal of Applied Microbiology, 131(1), 513–526. https://doi.org/10.1111/jam.14955
Cochrane, M. A., & Laurance, W. F. (2008). Synergisms among fire, land use, and climate change in the Amazon. Ambio, 37(7–8), 522–527. https://doi.org/10.1579/0044-7447-37.7.522
CONAMA. (2005). Resolução Conama No 357 (p. 23). Agência Nacional de águas. http://pnqa.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf
Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2002). Enumeration of faecal coliforms from recreational coastal sites: evaluation of techniques for the separation of bacteria from sediments. Journal of Applied Microbiology, 93(4), 557–565. https://doi.org/10.1046/J.1365-2672.2002.01730.X
Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2004). Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal of Applied Microbiology, 96(5), 922–930. https://doi.org/10.1111/J.1365-2672.2004.02243.X
Dalu, T., Cuthbert, R. N., Methi, M. J., Dondofema, F., Chari, L. D., & Wasserman, R. J. (2021). Drivers of aquatic macroinvertebrate communities in a Ramsar declared wetland system. https://doi.org/10.1016/j.scitotenv.2021.151683
Dalu, T., Wasserman, R. J., & Dalu, M. T. B. (2017). Agricultural intensification and drought frequency increases may have landscape-level consequences for ephemeral ecosystems. Global Change Biology, 23(3), 983–985. https://doi.org/10.1111/GCB.13549
Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 178. http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Henrichs, M., Langergraber, G., & Uhl, M. (2007). Modelling of organic matter degradation in constructed wetlands for treatment of combined sewer overflow. Science of The Total Environment, 380(1–3), 196–209. https://doi.org/10.1016/J.SCITOTENV.2006.11.044
Hong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G., & Ding, S. (2020). Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province. Sustainability 2020, Vol. 12, Page 1300, 12(4), 1300. https://doi.org/10.3390/SU12041300
Iriondo, M. (2004). Large wetlands of South America: a model for Quaternary humid environments. Quaternary International, 114(1), 3–9. https://doi.org/10.1016/S1040-6182(03)00037-5
Itaipu-Binacional. (2018). Comunicación de Progreso y Reporte de Sostenibilidad Itaipu Lado Paraguayo. https://www.itaipu.gov.py/sites/default/files/COP_Y_REPORTE_DE_SOSTENIBILIDAD_ITAIPU_2018.pdf
James O’Dell. (1993). Method 180.1: Determination of Turbidity by Nephelometry. USEPA. www.epa.gov
Ksoll, W. B., Ishii, S., Sadowsky, M. J., & Hicks, R. E. (2007). Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. Applied and Environmental Microbiology, 73(12), 3771–3778. https://doi.org/10.1128/AEM.02654-06
Mcmurry, S. T., Belden, J. B., Smith, L. M., Morrison, S. A., Daniel, D. W., Euliss, B. R., Euliss, N. H., Kensinger, B. J., Tangen, B. A., & Barcelo, D. (2016). Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota. https://doi.org/10.1016/j.scitotenv.2016.04.209
Mitsch, William J, Gosselink, J. G. (2015a). Wetlands Fifth Edition. In Wi Ley (Vol. 91, Issue 5).
Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, 1–993. https://doi.org/10.1007/978-3-540-31211-6
Peralta, A. L., Ludmer, S., Matthews, J. W., & Kent, A. D. (2014). Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands. Ecological Engineering, 73, 246–253. https://doi.org/10.1016/j.ecoleng.2014.09.047
Peris, A., Barbieri, M. V., Postigo, C., Rambla-Alegre, M., López de Alda, M., & Eljarrat, E. (2022). Pesticides in sediments of the Ebro River Delta cultivated area (NE Spain): Occurrence and risk assessment for aquatic organisms. Environmental Pollution, 305, 119239. https://doi.org/10.1016/J.ENVPOL.2022.119239
Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156(1), 61–66. https://doi.org/10.1016/J.ENVPOL.2008.01.015
Power, M. L., Littlefield-Wyer, J., Gordon, D. M., Veal, D. A., & Slade, M. B. (2005). Phenotypic and genotypic characterization of encapsulated Escherichia coli isolated from blooms in two Australian lakes. Environmental Microbiology, 7(5), 631–640. https://doi.org/10.1111/J.1462-2920.2005.00729.X
Rice, E. W., & Baird, R. B. (2017). Methods for the Examination of Water and Wastewater. In A. D. Eaton, L. S. Clesceri, & A. E. Greenberg (Eds.), American Public Health Association, American Water Works (Vol. 23). AWWA (American Water Works Association).
Scholz, M., & Hedmark, Å. (n.d.). Constructed Wetlands Treating Runoff Contaminated with Nutrients. https://doi.org/10.1007/s11270-009-0076-y
SEAM. (2002). Resolucion 222/2002 (p. 6). Secretaría del Ambiente Paraguay. http://archivo.seam.gov.py/sites/default/files/resolucion_222_02.pdf
Seo, E. Y., Jung, D., Yong, S. C., Park, R. Y., Lee, Y. O., & Ahn, T. S. (2016). Monitoring of fecal contamination in a partly restored urban stream in Seoul, Korea. Environmental Engineering Research, 21(2), 211–218. https://doi.org/10.4491/EER.2015.049
Shelton, L. R., Capel, P. D., & Eaton, G. P. (1994). Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program. Open-File Report. https://doi.org/10.3133/OFR94458
Sims, A., Zhang, Y., Gajaraj, S., Brown, P. B., & Hu, Z. (2013). Toward the development of microbial indicators for wetland assessment. https://doi.org/10.1016/j.watres.2013.01.023
Solo-Gabriele, H. M., Wolfert, M. A., Desmarais, T. R., & Palmer, C. J. (2000). Sources of Escherichia coli in a coastal subtropical environment. Applied and Environmental Microbiology, 66(1), 230–237. https://doi.org/10.1128/AEM.66.1.230-237.2000
Toothman, B. R., Cahoon, L. B., & Mallin, M. A. (n.d.). Phosphorus and carbohydrate limitation of fecal coliform and fecal enterococcus within tidal creek sediments. https://doi.org/10.1007/s10750-009-9969-4
UN-Water. (2018). Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation. https://sustainabledevelopment.un.org/content/documents/19901SDG6_SR2018_web_3.pdf
Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10(2), 109–122. https://doi.org/10.1016/0304-4203(81)90027-X
Vera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin, J., Nicolini, M., Nogues-Paegle, J., Paegle, J., Penalba, O., Salio, P., Saulo, C., Dias, M. A. S., Dias, P. S., & Zipser, E. (n.d.). THE SOUTH AMERICAN LOW-LEVEL JET EXPERIMENT. https://doi.org/10.1175/BAMS-87-I-63
Victória Weykamp, F., & Ambrizzi, T. (n.d.). THE ROLE OF THE LOW-LEVEL JET EAST OF THE ANDES IN EXTREME RAINFALL EVENTS OVER SOUTHERN SOUTH AMERICA.
Watson, J. T., Choate, K. D., & Steiner, G. R. (1990). Performance of Constructed Wetland Treatment Systems at Benton, Hardin, and Pembroke, Kentucky, during the Early Vegetation Establishment Phase. Constructed Wetlands in Water Pollution Control, 171–182. https://doi.org/10.1016/B978-0-08-040784-5.50021-8
Zedler, J. B., & Kercher, S. (2005). Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. https://doi.org/10.1146/annurev.energy.30.050504.144248