1 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424, doi:10.3322/caac.21492 (2018).
2 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA: a cancer journal for clinicians 69, 7-34, doi:10.3322/caac.21551 (2019).
3 Robson, M. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. The New England journal of medicine 377, 523-533, doi:10.1056/NEJMoa1706450 (2017).
4 Litton, J. K. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. The New England journal of medicine 379, 753-763, doi:10.1056/NEJMoa1802905 (2018).
5 Schmid, P. et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. The New England journal of medicine 379, 2108-2121, doi:10.1056/NEJMoa1809615 (2018).
6 Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. The New England journal of medicine 363, 1938-1948, doi:10.1056/NEJMra1001389 (2010).
7 Bosch, A., Eroles, P., Zaragoza, R., Viña, J. R. & Lluch, A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer treatment reviews 36, 206-215, doi:10.1016/j.ctrv.2009.12.002 (2010).
8 Dent, R. et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 4429-4434, doi:10.1158/1078-0432.ccr-06-3045 (2007).
9 Isakoff, S. J. et al. TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 33, 1902-1909, doi:10.1200/jco.2014.57.6660 (2015).
10 Silver, D. P. et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28, 1145-1153, doi:10.1200/jco.2009.22.4725 (2010).
11 Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research 22, 1775-1789, doi:10.1101/gr.132159.111 (2012).
12 Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26-46, doi:10.1016/j.cell.2013.06.020 (2013).
13 Jeong, G. et al. A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Scientific reports 8, 12922, doi:10.1038/s41598-018-31306-8 (2018).
14 Qiao, K. et al. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. Journal of experimental & clinical cancer research : CR 38, 418, doi:10.1186/s13046-019-1421-7 (2019).
15 Guo, G., Dai, S. & Chen, Q. Long Noncoding RNA LINC00261 Reduces Proliferation and Migration of Breast Cancer Cells via the NME1-EMT Pathway. Cancer management and research 12, 3081-3089, doi:10.2147/cmar.s237197 (2020).
16 Xu, Z. et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacological research 152, 104628, doi:10.1016/j.phrs.2020.104628 (2020).
17 Guo, S. et al. Novel Breast-Specific Long Non-coding RNA LINC00993 Acts as a Tumor Suppressor in Triple-Negative Breast Cancer. Frontiers in oncology 9, 1325, doi:10.3389/fonc.2019.01325 (2019).
18 Han, C., Fu, Y., Zeng, N., Yin, J. & Li, Q. LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis. Aging 12, 3594-3616, doi:10.18632/aging.102832 (2020).
19 Tang, L. et al. Long Noncoding RNA DCST1-AS1 Promotes Cell Proliferation and Metastasis in Triple-negative Breast Cancer by Forming a Positive Regulatory Loop with miR-873-5p and MYC. Journal of Cancer 11, 311-323, doi:10.7150/jca.33982 (2020).
20 Tian, T. et al. Identification of long non-coding RNA signatures in triple-negative breast cancer. Cancer cell international 18, 103, doi:10.1186/s12935-018-0598-8 (2018).
21 Sun, M. et al. An eight-lncRNA signature predicts survival of breast cancer patients: a comprehensive study based on weighted gene co-expression network analysis and competing endogenous RNA network. Breast cancer research and treatment 175, 59-75, doi:10.1007/s10549-019-05147-6 (2019).
22 He, Y. et al. A prognostic 11 long noncoding RNA expression signature for breast invasive carcinoma. Journal of cellular biochemistry 120, 16692-16702, doi:10.1002/jcb.28927 (2019).
23 Y, N. et al. Profiling the epigenetic interplay of lncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by gene in situ cis-activation. 9, 1635-1649 (2019).
24 Lv, M. et al. LncRNAs as new biomarkers to differentiate triple negative breast cancer from non-triple negative breast cancer. Oncotarget 7, 13047-13059, doi:10.18632/oncotarget.7509 (2016).
25 Fan, C. N., Ma, L. & Liu, N. Comprehensive analysis of novel three-long noncoding RNA signatures as a diagnostic and prognostic biomarkers of human triple-negative breast cancer. Journal of cellular biochemistry 120, 3185-3196, doi:10.1002/jcb.27584 (2019).
26 Jiang, Y. Z. et al. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA Signature with Predictive and Prognostic Value. Cancer research 76, 2105-2114, doi:10.1158/0008-5472.can-15-3284 (2016).
27 Meng, J., Li, P., Zhang, Q., Yang, Z. & Fu, S. A four-long non-coding RNA signature in predicting breast cancer survival. Journal of experimental & clinical cancer research : CR 33, 84, doi:10.1186/s13046-014-0084-7 (2014).
28 Ma, J., Feng, J. & Zhou, X. Long non-coding RNA HAGLROS regulates lipid metabolism reprogramming in intrahepatic cholangiocarcinoma via the mTOR signaling pathway. Experimental and molecular pathology 115, 104466, doi:10.1016/j.yexmp.2020.104466 (2020).
29 Wang, W. L., Yu, D. J. & Zhong, M. LncRNA HAGLROS accelerates the progression of lung carcinoma via sponging microRNA-152. European review for medical and pharmacological sciences 23, 6531-6538, doi:10.26355/eurrev_201908_18538 (2019).
30 Mu, G., Liu, Q., Wu, S., Xia, Y. & Fang, Q. Long noncoding RNA HAGLROS promotes the process of mantle cell lymphoma by regulating miR-100/ATG5 axis and involving in PI3K/AKT/mTOR signal. Artificial cells, nanomedicine, and biotechnology 47, 3649-3656, doi:10.1080/21691401.2019.1645151 (2019).
31 Wu, P. F., Dai, Z. T., Liu, W. D., Zhao, Z. X. & Kong, Y. H. Elevated long noncoding RNA HAGLROS expression correlates with clinical progression and prognosis in osteosarcoma. European review for medical and pharmacological sciences 23, 1428-1433, doi:10.26355/eurrev_201902_17099 (2019).
32 Chen, Y. et al. HAGLROS is overexpressed and promotes non-small cell lung cancer migration and invasion. Japanese journal of clinical oncology, doi:10.1093/jjco/hyaa075 (2020).
33 Yang, M., Zhai, Z., Zhang, Y. & Wang, Y. Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Archives of gynecology and obstetrics 300, 703-710, doi:10.1007/s00404-019-05218-5 (2019).
34 Bermúdez, M. et al. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Frontiers in oncology 9, 1008, doi:10.3389/fonc.2019.01008 (2019).
35 Wei, H. et al. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells. International immunopharmacology 73, 72-80, doi:10.1016/j.intimp.2019.04.049 (2019).
36 Zhang, W., Zhang, Y. & Xi, S. Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Artificial cells, nanomedicine, and biotechnology 47, 3043-3052, doi:10.1080/21691401.2019.1640233 (2019).
37 Zheng, Y., Tan, K. & Huang, H. Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression. Journal of cellular biochemistry 120, 3922-3933, doi:10.1002/jcb.27676 (2019).
38 Liu, Y., Li, L., Wang, X., Wang, P. & Wang, Z. LncRNA TONSL-AS1 regulates miR-490-3p/CDK1 to affect ovarian epithelial carcinoma cell proliferation. Journal of ovarian research 13, 60, doi:10.1186/s13048-020-00657-0 (2020).
39 Wang, P. et al. A novel long non-coding RNA TONSL-AS1 regulates progression of gastric cancer via activating TONSL. Experimental cell research 382, 111453, doi:10.1016/j.yexcr.2019.05.034 (2019).
40 Zhang, K. et al. Long non-coding RNAs as novel biomarkers for breast cancer invasion and metastasis. Oncology letters 14, 1895-1904, doi:10.3892/ol.2017.6462 (2017).
41 Qiu, M. et al. aarF domain containing kinase 5 gene promotes invasion and migration of lung cancer cells through ADCK5-SOX9-PTTG1 pathway. Experimental cell research 392, 112002, doi:10.1016/j.yexcr.2020.112002 (2020).
42 Kas, K., Wlodarska, I., Meyen, E., Van den Berghe, H. & Van de Ven, W. J. Assignment of the gene encoding human Krüppel-related zinc finger protein 4 (GLI4) to 8q24.3 by fluorescent in situ hybridization. Cytogenetics and cell genetics 72, 297-298, doi:10.1159/000134207 (1996).
43 Shi, W. et al. FBXL6 governs c-MYC to promote hepatocellular carcinoma through ubiquitination and stabilization of HSP90AA1. Cell communication and signaling : CCS 18, 100, doi:10.1186/s12964-020-00604-y (2020).
44 Liao, W. et al. Overexpression of a novel osteopetrosis-related gene CCDC154 suppresses cell proliferation by inducing G2/M arrest. Cell cycle (Georgetown, Tex.) 11, 3270-3279, doi:10.4161/cc.21642 (2012).
45 Sun, Y. et al. Oncogenic potential of TSTA3 in breast cancer and its regulation by the tumor suppressors miR-125a-5p and miR-125b. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37, 4963-4972, doi:10.1007/s13277-015-4178-4 (2016).
46 Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nature reviews. Cancer 18, 5-18, doi:10.1038/nrc.2017.99 (2018).
47 Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: a historical perspective. Nature reviews. Cancer 16, 35-42, doi:10.1038/nrc.2015.4 (2016).
48 Kraya, A. A. et al. Genomic Signatures Predict the Immunogenicity of BRCA-Deficient Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 25, 4363-4374, doi:10.1158/1078-0432.ccr-18-0468 (2019).