Abral, H., Pratama, A. B., Handayani, D., Mahardika, M., Aminah, I., Sandrawati, N., . . . Perez, V. H. (2021). Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. International Journal of Polymer Science, 2021, 1-11.
Adewuyi, A., & Pereira, F. V. (2017). Surface modification of cellulose isolated from Sesamun indicum underutilized seed: A means of enhancing cellulose hydrophobicity. Journal of Science: Advanced Materials and Devices, 2(3), 326-332.
Altman, R. (2021). The myth of historical bio-based plastics. Science, 373(6550), 47-49.
Awada, H., Montplaisir, D., & Daneault, C. (2014). Cross-Linking of Papers Based on Thermomechanical Pulp Fibers by Polycarboxylic Acids: Influence on the Wet Breaking Length. Industrial & Engineering Chemistry Research, 53(11), 4312-4317.
Bangar, S. P., Whiteside, W. S., Dunno, K. D., Cavender, G. A., & Dawson, P. (2022). Pearl millet starch-based nanocomposite films reinforced with Kudzu cellulose nanocrystals and essential oil: Effect on functionality and biodegradability. Food Res Int, 157, 111384.
Chavan, P., Sinhmar, A., Sharma, S., Dufresne, A., Thory, R., Kaur, M., . . . Nain, V. (2022). Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. Starch - Stärke, 74(5-6).
Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057-1075.
Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally degradable bio-based polymeric blends and composites. Macromol Biosci, 4(3), 218-231.
Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., & Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers (Basel), 14(6).
Fei, Z., Huang, S., Yin, J., Xu, F., & Zhang, Y. (2015). Preparation and Characterization of Bio-based Degradable Plastic Films Composed of Cellulose Acetate and Starch Acetate. Journal of Polymers and the Environment, 23(3), 383-391.
Geyer, R., Jambeck, J. R., & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
Guan, Q.-F., Yang, K.-P., Han, Z.-M., Yang, H.-B., Ling, Z.-C., Yin, C.-H., & Yu, S.-H. (2021). Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. ACS Materials Letters, 4(1), 87-92.
Guzman-Puyol, S., Tedeschi, G., Goldoni, L., Benítez, J. J., Ceseracciu, L., Koschella, A., . . . Heredia-Guerrero, J. A. (2022). Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocolloids, 128.
Heidarian, P., Behzad, T., Karimi, K., & Sain, M. (2018). Properties investigation of recycled polylactic acid reinforced by cellulose nanofibrils isolated from bagasse. Polymer Composites, 39(10), 3740-3749.
Kassem, I., Kassab, Z., Khouloud, M., Sehaqui, H., Bouhfid, R., Jacquemin, J., . . . El Achaby, M. (2020). Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels. Int J Biol Macromol, 162, 136-149.
Kim, H., Jeon, H., Shin, G., Lee, M., Jegal, J., Hwang, S. Y., . . . Park, J. (2021). Biodegradable nanocomposite of poly(ester-co-carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags. Green Chemistry, 23(6), 2293-2299.
Lal, S. S., & Mhaske, S. T. (2020). Old corrugated box (OCB)-based cellulose nanofiber-reinforced and citric acid-cross-linked TSP–guar gum composite film. Polymer Bulletin, 78(2), 885-915.
Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., & Bahador, A. (2018). Preventing the collapse of 3D bacterial cellulose network via citric acid. Journal of Nanostructure in Chemistry, 8(3), 311-320.
Nurlidar, F., Budianto, E., Darwis, D., & Sugiarto. (2015). Hydroxyapatite Deposition on Modified Bacterial Cellulose Matrix. Macromolecular Symposia, 353(1), 128-132.
Olivato, J. B., Grossmann, M. V., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydr Polym, 90(1), 159-164.
Pereira, J. F., Marim, B. M., & Mali, S. (2022). Chemical Modification of Cellulose Using a Green Route by Reactive Extrusion with Citric and Succinic Acids. Polysaccharides, 3(1), 292-305.
Pérez-Arauz, A. O., Aguilar-Rabiela, A. E., Vargas-Torres, A., Rodríguez-Hernández, A. I., Chavarría-Hernández, N., Vergara-Porras, B., & López-Cuellar, M. R. (2019). Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packaging and Shelf Life, 20.
Qi, X., Ren, Y., & Wang, X. (2017). New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation, 117, 215-223.
Rai, P., Mehrotra, S., Priya, S., Gnansounou, E., & Sharma, S. K. (2021). Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology, 325, 124739.
Reddy, N., Li, Y., & Yang, Y. (2009). Wet Cross-Linking Gliadin Fibers with Citric Acid and a Quantitative Relationship between Cross-Linking Conditions and Mechanical Properties. Journal of Agricultural and Food Chemistry, 57(1), 90-98.
Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118(3), 702-711.
Rojas-Lema, S., Nilsson, K., Trifol, J., Langton, M., Gomez-Caturla, J., Balart, R., . . . Moriana, R. (2021). “Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material”. Food Hydrocolloids, 121.
Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., & Samadi Kafil, H. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 84, 414-423.
Salihu, R., Ansari, M. N. M., Abd Razak, S. I., Ahmad Zawawi, N., Shahir, S., Sani, M. H., . . . Gumel, A. M. (2021). Catalyst-Free Crosslinking Modification of Nata-de-Coco-Based Bacterial Cellulose Nanofibres Using Citric Acid for Biomedical Applications. Polymers (Basel), 13(17).
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnol Adv, 26(3), 246-265.
Shao, H., Sun, H., Yang, B., Zhang, H., & Hu, Y. (2019). Facile and green preparation of hemicellulose-based film with elevated hydrophobicity via cross-linking with citric acid. RSC Adv, 9(5), 2395-2401.
Sharma, S., Basu, S., Shetti, N. P., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Microplastics in the environment: Occurrence, perils, and eradication. Chemical Engineering Journal, 408, 127317.
Sheth, M. U., Kwartler, S. K., Schmaltz, E. R., Hoskinson, S. M., Martz, E. J., Dunphy-Daly, M. M., . . . Somarelli, J. A. (2019). Bioengineering a Future Free of Marine Plastic Waste. Frontiers in Marine Science, 6.
Shi, R., Zhang, Z., Liu, Q., Han, Y., Zhang, L., Chen, D., & Tian, W. (2007). Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydrate Polymers, 69(4), 748-755.
Soheilmoghaddam, F., Sharifzadeh, G., Adelnia, H., & Wahit, M. U. (2021). Development of Regenerated Cellulose/Citric Acid Films with Ionic Liquids. Journal of Polymers and the Environment, 30(2), 613-621.
Sun, D., Zhou, L., Wu, Q., & Yang, S. (2007). Preliminary research on structure and properties of nano-cellulose. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 677-680.
Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants — A review. Biotechnology Advances, 25(2), 148-175.
Uliniuc, A., Hamaide, T., Popa, M., & Băcăiță, S. (2013). Modified Starch-Based Hydrogels Cross-Linked with Citric Acid and their use as Drug Delivery Systems for Levofloxacin. Soft Materials, 11(4), 483-493.
Wang, F., Nan, Z., Sun, X., Liu, C., Zhuang, Y., Zan, J., . . . Liu, Y. (2022). Characterization of degradation behaviors of PLA biodegradable plastics by infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc, 279, 121376.
Xie, Y., Niu, X., Yang, J., Fan, R., Shi, J., Ullah, N., . . . Chen, L. (2020). Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol, 150, 480-491.
Ye, D., Lei, X., Li, T., Cheng, Q., Chang, C., Hu, L., & Zhang, L. (2019). Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 13(4), 4843-4853.
Zhang, H., Su, Z., & Wang, X. (2022). Starch-Based Rehealable and Degradable Bioplastic Enabled by Dynamic Imine Chemistry. ACS Sustainable Chemistry & Engineering, 10(26), 8650-8657.
Zhou, C., Girouard, F., O'Brien, B., Ronholm, J., & Wang, Y. (2022). Construction of chevaux-de-frise from cellulose nanocrystals to enable mechano-bactericidal activity on recycled waste cotton films. Green Chemistry, 24(3), 1109-1113.