1. Doddam SN, Peddireddy V, Yerra P, Sai Arun PP, Qaria MA, Baddam R, et al. Mycobacterium tuberculosis DosR regulon gene Rv2004c contributes to streptomycin resistance and intracellular survival. Int J Med Microbiol 2019;309(8):151353.
2. Frizinsky S, Haj-Yahia S, Machnes Maayan D, Lifshitz Y, Maoz-Segal R, Offengenden I, et al. The innate immune perspective of autoimmune and autoinflammatory conditions. Rheumatology (Oxford) 2019;58(Supplement_6):vi1–8.
3. Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020;121:99–110.
4. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19(5):311–32.
5. Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019;19(10):599–613.
6. Pérez I, Uranga S, Sayes F, Frigui W, Samper S, Arbues A, et al. Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro–American genetic background confers optimal vaccine potential. EBioMedicine 2020;55:102761.
7. Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol 2019;9:299.
8. Acevedo-Rodriguez P. Distributional patterns in Brazilian Serjania (Sapindaceae). Acta Bot Bras 1990;4:69–82.
9. Lista do Brasil - Serjania marginata Casar. [Internet]. [citado 2021 out 16];Available from: http://floradobrasil.jbrj.gov.br/jabot/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB20963
10. Ferrucci, M.S. Sapindaceae. In: Spichiger, R. & Ramella, L. Flora del Paraguay. St. Louis: Missouri Botanical Garden; 1991.
11. Corrêa, M. P., Pena, L. A. Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Rio de Janeiro : Ministério da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal; 1984.
12. Heredia-Vieira SC, Simonet AM, Vilegas W, Macías FA. Unusual C,O-Fused Glycosylapigenins from Serjania marginata Leaves. J Nat Prod 2015;78(1):77–84.
13. Bourdy G, Chāvez de Michel LR, Roca-Coulthard A. Pharmacopoeia in a shamanistic society: the Izoceño-Guaraní (Bolivian Chaco). J Ethnopharmacol 2004;91(2–3):189–208.
14. do Carmo Ota E, Honorato CA, Heredia-Vieira SC, Flores-Quintana CI, de Castro Silva TS, Inoue LAKA, et al. Hepatic and gastroprotective activity of Serjania marginata leaf aqueous extract in Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem 2019;45(3):1051–65.
15. Périco LL, Heredia-Vieira SC, Beserra FP, de Cássia Dos Santos R, Weiss MB, Resende FA, et al. Does the gastroprotective action of a medicinal plant ensure healing effects? An integrative study of the biological effects of Serjania marginata Casar. (Sapindaceae) in rats. J Ethnopharmacol 2015;172:312–24.
16. da Silva Moreira S, Tamashiro LK, Jorge BC, da Silva Balin P, Heredia-Vieira SC, de Almeida GL, et al. Toxicological safety evaluation in acute and 28-day studies of aqueous extract from Serjania marginata Casar. (Sapindaceae) leaves in rats. Journal of Ethnopharmacology 2019;231:197–204.
17. Castelo APC, Arruda BN, Coelho RG, Honda NK, Ferrazoli C, Pott A, et al. Gastroprotective effect of Serjania erecta Radlk (Sapindaceae): involvement of sensory neurons, endogenous nonprotein sulfhydryls, and nitric oxide. J Med Food 2009;12(6):1411–5.
18. de Lima MRF, de Souza Luna J, dos Santos AF, de Andrade MCC, Sant’Ana AEG, Genet J-P, et al. Anti-bacterial activity of some Brazilian medicinal plants. J Ethnopharmacol 2006;105(1–2):137–47.
19. Palomino J-C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002;46(8):2720–2.
20. National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility testing. 2002;
21. Campos JF, dos Santos UP, Macorini LFB, de Melo AMMF, Balestieri JBP, Paredes-Gamero EJ, et al. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food and Chemical Toxicology 2014;65:374–80.
22. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962;111:544–7.
23. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000;87(2):149–58.
24. Vinegar R, Truax JF, Selph JL. Some quantitative temporal characteristics of carrageenin-induced pleurisy in the rat. Proc Soc Exp Biol Med 1973;143(3):711–4.
25. Andrade-Silva M, Correa LB, Candéa ALP, Cavalher-Machado SC, Barbosa HS, Rosas EC, et al. The cannabinoid 2 receptor agonist β-caryophyllene modulates the inflammatory reaction induced by Mycobacterium bovis BCG by inhibiting neutrophil migration. Inflamm Res 2016;65(11):869–79.
26. Kassuya R, Radai J, Macorini L, Nunes V, Salvador M, Leite P, et al. Blutaparon portulacoides ethanolic extract reduced IL-1β and inflammatory parameters induced by the Mycobacterium complex and carrageenan in mice. Inflammopharmacology 2021;29.
27. Salinas-Sánchez DO, Jiménez-Ferrer E, Sánchez-Sánchez V, Zamilpa A, González-Cortazar M, Tortoriello J, et al. Anti-Inflammatory Activity of a Polymeric Proanthocyanidin from Serjania schiedeana. Molecules 2017;22(6):E863.
28. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, et al. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. British Journal of Pharmacology 2004;142(2):331–8.
29. Dos Santos E, Leitão MM, Aguero Ito CN, Silva-Filho SE, Arena AC, Silva-Comar FM de S, et al. Analgesic and anti-inflammatory articular effects of essential oil and camphor isolated from Ocimum kilimandscharicum Gürke leaves. J Ethnopharmacol 2021;269:113697.
30. Leitão MM, Radai JAS, Ferrari IC, Negrão FJ, Silva-Filho SE, Oliveira RJ, et al. Effects of an ethanolic extract and fractions from Piper glabratum (Piperaceae) leaves on pain and inflammation. Regulatory Toxicology and Pharmacology 2020;117:104762.
31. Hernández-Rodríguez P, Baquero LP, Larrota HR. Chapter 14 - Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity [Internet]. In: Campos MRS, organizador. Bioactive Compounds. Woodhead Publishing; 2019 [citado 2021 ago 27]. página 265–88.Available from: https://www.sciencedirect.com/science/article/pii/B9780128147740000141
32. Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019;299:125124.
33. Cádiz-Gurrea MDLL, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins. Int J Mol Sci 2017;18(2):E376.
34. Cardoso CAL, Coelho RG, Honda NK, Pott A, Pavan FR, Leite CQF. Phenolic compounds and antioxidant, antimicrobial and antimycobacterial activities of Serjania erecta Radlk. (Sapindaceae). Braz J Pharm Sci 2013;49:775–82.
35. Bourigault M-L, Segueni N, Rose S, Court N, Vacher R, Vasseur V, et al. Relative contribution of IL-1α, IL-1β and TNF to the host response to Mycobacterium tuberculosis and attenuated M. bovis BCG. Immun Inflamm Dis 2013;1(1):47–62.
36. Jayaraman P, Sada-Ovalle I, Nishimura T, Anderson AC, Kuchroo VK, Remold HG, et al. IL-1β Promotes Antimicrobial Immunity in Macrophages by Regulating TNFR Signaling and Caspase-3 Activation. The Journal of Immunology 2013;190(8):4196–204.
37. Weiss DI, Ma F, Merleev AA, Maverakis E, Gilliet M, Balin SJ, et al. IL-1β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells. The Journal of Immunology 2019;203(4):911–21.
38. Njeru SN, Muema JM. Antimicrobial activity, phytochemical characterization and gas chromatography-mass spectrometry analysis of Aspilia pluriseta Schweinf. extracts. Heliyon 2020;6(10):e05195.
39. Dubé J-Y, McIntosh F, Zarruk JG, David S, Nigou J, Behr MA. Synthetic mycobacterial molecular patterns partially complete Freund’s adjuvant. Sci Rep 2020;10(1):5874.