Background: Increase in life-span in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power, enable new methods for early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease.
Methods: We conducted a systematic review following PRISMA guidelines of studies where Machine Learning was applied to neuroimaging data in order to predict the progression from Mild Cognitive Impairment to Alzheimer’s disease. After removing duplicates, we screened 159 studies and selected 47 for a qualitative analysis.
Results: Most studies used Magnetic Resonance Image and Positron Emission Tomography data but also Magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease Neuroimage Initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common were support vector machines, but more complex models such as Deep Learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, biological, and behavioral) achieved the best performance.
Conclusions: Although performance of the different models still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.
Figure 1
Figure 2
Loading...
Posted 15 Mar, 2021
On 08 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
Posted 15 Mar, 2021
On 08 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
On 01 Mar, 2021
Background: Increase in life-span in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power, enable new methods for early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease.
Methods: We conducted a systematic review following PRISMA guidelines of studies where Machine Learning was applied to neuroimaging data in order to predict the progression from Mild Cognitive Impairment to Alzheimer’s disease. After removing duplicates, we screened 159 studies and selected 47 for a qualitative analysis.
Results: Most studies used Magnetic Resonance Image and Positron Emission Tomography data but also Magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease Neuroimage Initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common were support vector machines, but more complex models such as Deep Learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, biological, and behavioral) achieved the best performance.
Conclusions: Although performance of the different models still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.
Figure 1
Figure 2
Loading...