Achard, P., Genschik, P., 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J. Exp. Bot. 60, 1085–1092.
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208.
Biłas, R., Szafran, K., Hnatuszko-Konka, K., Kononowicz, A.K., 2016. Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue Organ Cult. 127, 269–287.
Bolle, C., 2016. Functional aspects of GRAS family proteins, in: Plant Transcription Factors. Elsevier, pp. 295–311.
Bolle, C., 2004. The role of GRAS proteins in plant signal transduction and development. Planta 218, 683–692. https://doi.org/10.1007/s00425-004-1203-z
Bolle, C., Koncz, C., Chua, N.-H., 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev. 14, 1269–1278.
Cenci, A., Rouard, M., 2017. Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Front. Plant Sci. 8, 273. doi: 10.3389/fpls.2017.00273
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202.
Chen, H., Li, H., Lu, X., Chen, L., Liu, J., Wu, H., 2019. Identification and Expression Analysis of GRAS Transcription Factors to Elucidate Candidate Genes Related to Stolons, Fruit Ripening and Abiotic Stresses in Woodland Strawberry (Fragaria vesca). Int. J. Mol. Sci. 20, 4593. https://doi.org/10.3390/ijms20184593
Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D.E., Cao, D., Luo, D., Harberd, N.P., Peng, J., 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055–1064. https://doi.org/10.1242/dev.00992
Chou, K.-C., Shen, H.-B., 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 3, 153.
Cui, H., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B., Benfey, P.N., 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425.
Dai, X., Zhuang, Z., Zhao, P.X., 2018. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54. https://doi.org/10.1093/nar/gky316
Davière, J.-M., Achard, P., 2016. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9, 10–20.
Davière, J.-M., Achard, P., 2013. Gibberellin signaling in plants. Development 140, 1147 LP – 1151. https://doi.org/10.1242/dev.087650
Dhondt, S., Coppens, F., De Winter, F., Swarup, K., Merks, R.M.H., Inzé, D., Bennett, M.J., Beemster, G.T.S., 2010. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol. 154, 1183–1195.
Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., Benfey, P.N., 1996. The SCARECROW Gene Regulates an Asymmetric Cell Division That is Essential for Generating the Radial Organization of the Arabidopsis Root. Cell 86, 423–433. https://doi.org/https://doi.org/10.1016/S0092-8674(00)80115-4
Dolgikh, A. V, Kirienko, A.N., Tikhonovich, I.A., Foo, E., Dolgikh, E.A., 2019. The DELLA Proteins Influence the Expression of Cytokinin Biosynthesis and Response Genes During Nodulation . Front. Plant Sci. .
Engstrom, E.M., 2012. HAM proteins promote organ indeterminacy: but how? Plant Signal. Behav. 7, 227–234.
Fan, T., Li, X., Yang, W., Xia, K., Ouyang, J., Zhang, M., 2015. Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors. PLoS One 10, e0125833.
Fode, B., Siemsen, T., Thurow, C., Weigel, R., Gatz, C., 2008. The Arabidopsis GRAS Protein SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of Stress-Inducible Promoters. Plant Cell 20, 3122-3135. https://doi.org/10.1105/tpc.108.058974
Fukazawa, J., Teramura, H., Murakoshi, S., Nasuno, K., Nishida, N., Ito, T., Yoshida, M., Kamiya, Y., Yamaguchi, S., Takahashi, Y., 2014. DELLAs Function as Coactivators of GAI-ASSOCIATED FACTOR1 in Regulation of Gibberellin Homeostasis and Signaling in Arabidopsis. Plant Cell 26, 2920 –2938. https://doi.org/10.1105/tpc.114.125690
Greb, T., Clarenz, O., Schäfer, E., Müller, D., Herrero, R., Schmitz, G., Theres, K., 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 17, 1175–1187. https://doi.org/10.1101/gad.260703
Grimplet, J., Agudelo-Romero, P., Teixeira, R.T., Martinez-Zapater, J.M., Fortes, A.M., 2016. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses . Front. Plant Sci. .
Guo, P., Wen, J., Yang, J., Ke, Y., Wang, M., Liu, M., Ran, F., Wu, Y., Li, P., Li, J., Du, H., 2019. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. Planta 250, 1051–1072. https://doi.org/10.1007/s00425-019-03199-y
Guo, Y., Wu, H., Li, X., Li, Q., Zhao, X., Duan, X., An, Y., Lv, W., An, H., 2017. Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS One 12, e0185418.
Hakoshima, T., 2018. Structural basis of the specific interactions of GRAS family proteins. FEBS Lett. 592, 489–501.
Han, Y., Yu, J., Zhao, T., Cheng, T., Wang, J., Yang, W., Pan, H., Zhang, Q., 2019. Dissecting the genome-wide evolution and function of R2R3-MYB transcription factor family in Rosa chinensis. Genes (Basel). 10, 823.
Hartmann, R.M., Schaepe, S., Nübel, D., Petersen, A.C., Bertolini, M., Vasilev, J., Küster, H., Hohnjec, N., 2019. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci. Rep. 9, 3360. https://doi.org/10.1038/s41598-019-40214-4
Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L., Downie, J.A., 2006. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 1739–1750.
Heerklotz, D., Döring, P., Bonzelius, F., Winkelhaus, S., Nover, L., 2001. The Balance of Nuclear Import and Export Determines the Intracellular Distribution and Function of Tomato Heat Stress Transcription Factor HsfA2. Mol. Cell. Biol. 21, 1759 LP – 1768. https://doi.org/10.1128/MCB.21.5.1759-1768.2001
Huang, W., Peng, S., Xian, Z., Lin, D., Hu, G., Yang, L., Ren, M., Li, Z., 2017. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnol. J. 15, 472–488. https://doi.org/https://doi.org/10.1111/pbi.12646
Huang, W., Xian, Z., Kang, X., Tang, N., Li, Z., 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol. 15, 209. https://doi.org/10.1186/s12870-015-0590-6
Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M., Matsuoka, M., 2002. The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. Plant Cell 14, 57– 70. https://doi.org/10.1105/tpc.010319
Kosugi, S., Hasebe, M., Tomita, M., Yanagawa, H., 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. 106, 10171 LP – 10176. https://doi.org/10.1073/pnas.0900604106
Lee, M.-H., Kim, B., Song, S.-K., Heo, J.-O., Yu, N.-I., Lee, S.A., Kim, M., Kim, D.G., Sohn, S.O., Lim, C.E., Chang, K.S., Lee, M.M., Lim, J., 2008. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol. Biol. 67, 659–670. https://doi.org/10.1007/s11103-008-9345-1
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., Rombauts, S., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327.
Li, D., Liu, X., Shu, L., Zhang, H., Zhang, S., Song, Y., Zhang, Z., 2020. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC Plant Biol. 20, 1–15.
Li, M., Sun, B., Xie, F., Gong, R., Luo, Y., Zhang, F., Yan, Z., Tang, H., 2019. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. PeerJ 7, e6682. https://doi.org/10.7717/peerj.6682
Liu, M., Huang, L., Ma, Z., Sun, W., Wu, Q., Tang, Z., Bu, T., Li, C., Chen, H., 2019. Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol. 19, 342. https://doi.org/10.1186/s12870-019-1951-3
Liu, X., Li, D., Zhang, S., Xu, Y., Zhang, Z., 2019. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance. BMC Plant Biol. 19, 1–12.
Liu, X., Widmer, A., 2014. Genome-wide Comparative Analysis of the GRAS Gene Family in Populus, Arabidopsis and Rice. Plant Mol. Biol. Report. 32, 1129–1145. https://doi.org/10.1007/s11105-014-0721-5
Liu, Y., Huang, W., Xian, Z., Hu, N., Lin, D., Ren, H., Chen, J., Su, D., Li, Z., 2017. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Front. Plant Sci. 8, 1659.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25, 402–408.
Ma, H.-S., Liang, D., Shuai, P., Xia, X.-L., Yin, W.-L., 2010. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J. Exp. Bot. 61, 4011–4019. https://doi.org/10.1093/jxb/erq217
Ma, Z., Hu, X., Cai, W., Huang, W., Zhou, X., Luo, Q., Yang, H., Wang, J., Huang, J., 2014. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions. PLOS Genet. 10, e1004519. https://doi.org/10.1371/journal.pgen.1004519
Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., 2012. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–D352.
Mayrose, M., Ekengren, S.K., Melech‐Bonfil, S., Martin, G.B., Sessa, G., 2006. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol. Plant Pathol. 7, 593–604.
Menz, I., Lakhwani, D., Clotault, J., Linde, M., Foucher, F., Debener, T., 2020. Analysis of the Rdr1 gene family in different Rosaceae genomes reveals an origin of an R-gene cluster after the split of Rubeae within the Rosoideae subfamily. PLoS One 15, e0227428.
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419.
Muntha, S.T., Zhang, L., Zhou, Y., Zhao, X., Hu, Z., Yang, J., Zhang, M., 2019. Phytochrome A signal transduction 1 and CONSTANS‐LIKE 13 coordinately orchestrate shoot branching and flowering in leafy Brassica juncea. Plant Biotechnol. J. 17, 1333–1343.
Nakajima, K., Sena, G., Nawy, T., Benfey, P.N., 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307–311. https://doi.org/10.1038/35095061
Nakamura, N., Hirakawa, H., Sato, S., Otagaki, S., Matsumoto, S., Tabata, S., Tanaka, Y., 2018. Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res. 25, 113–121.
Niu, G., Rodriguez, D.S., 2009. Growth and physiological responses of four rose rootstocks to drought stress. J. Am. Soc. Hortic. Sci. 134, 202–209.
Niu, X., Chen, S., Li, J., Liu, Y., Ji, W., Li, H., 2019. Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1. BMC Genomics 20, 635. https://doi.org/10.1186/s12864-019-5985-6
Park, J., Nguyen, K.T., Park, E., Jeon, J.-S., Choi, G., 2013. DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25, 927–943.
Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R.K., Zhou, Z., Zhao, Z., Luo, Z., Chitikineni, A., Wang, L., 2021. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. J. Exp. Bot. 72, 1104–1118.
Pimprikar, P., Carbonnel, S., Paries, M., Katzer, K., Klingl, V., Bohmer, M.J., Karl, L., Floss, D.S., Harrison, M.J., Parniske, M., 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr. Biol. 26, 987–998.
Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., Benfey, P.N., 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119. https://doi.org/https://doi.org/10.1046/j.1365-313X.1999.00431.x
Randoux, M., Jeauffre, J., Thouroude, T., Vasseur, F., Hamama, L., Juchaux, M., Sakr, S., Foucher, F., 2012. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J. Exp. Bot. 63, 6543–6554. https://doi.org/10.1093/jxb/ers310
Raymond, O., Gouzy, J., Just, J., Badouin, H., Verdenaud, M., Lemainque, A., Vergne, P., Moja, S., Choisne, N., Pont, C., 2018. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50, 772–777.
Roy, S.W., Penny, D., 2007. Patterns of Intron Loss and Gain in Plants: Intron Loss–Dominated Evolution and Genome-Wide Comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 24, 171–181. https://doi.org/10.1093/molbev/msl159
Sabatini, S., Heidstra, R., Wildwater, M., Scheres, B., 2003. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17, 354–358.
Saint-Oyant, L.H., Ruttink, T., Hamama, L., Kirov, I., Lakhwani, D., Zhou, N.-N., Bourke, P.M., Daccord, N., Leus, L., Schulz, D., 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. plants 4, 473–484.
Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., Bork, P., 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234. https://doi.org/10.1093/nar/28.1.231
Shan, Z., Luo, X., Wu, M., Wei, L., Fan, Z., Zhu, Y., 2020. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol. 20, 46. https://doi.org/10.1186/s12870-020-2242-8
Sidhu, N.S., Pruthi, G., Singh, S., Bishnoi, R., Singla, D., 2020. Genome-wide identification and analysis of GRAS transcription factors in the bottle gourd genome. Sci. Rep. 10, 14338. https://doi.org/10.1038/s41598-020-71240-2
Song, X.-M., Liu, T.-K., Duan, W.-K., Ma, Q.-H., Ren, J., Wang, Z., Li, Y., Hou, X.-L., 2014. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics 103, 135–146.
Stecher, G., Tamura, K., Kumar, S., 2020. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239.
Stuurman, J., Jäggi, F., Kuhlemeier, C., 2002. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev. 16, 2213–2218.
Sun, L., Li, X., Fu, Y., Zhu, Z., Tan, L., Liu, F., Sun, Xianyou, Sun, Xuewen, Sun, C., 2013. GS6, A Member of the GRAS Gene Family, Negatively Regulates Grain Size in Rice. J. Integr. Plant Biol. 55, 938–949. https://doi.org/https://doi.org/10.1111/jipb.12062
Tian, C., Wan, P., Sun, S., Li, J., Chen, M., 2004. Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis. Plant Mol. Biol. 54, 519–532. https://doi.org/10.1023/B:PLAN.0000038256.89809.57
To, V.-T., Shi, Q., Zhang, Y., Shi, J., Shen, C., Zhang, D., Cai, W., 2020. Genome-Wide Analysis of the GRAS Gene Family in Barley (Hordeum vulgare L.). Genes . https://doi.org/10.3390/genes11050553
Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., Chu, C., 2009. DWARF AND LOW‐TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58, 803–816.
Torres-Galea, P., Hirtreiter, B., Bolle, C., 2013. Two GRAS Proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, Function Cooperatively in Phytochrome A Signal Transduction. Plant Physiol. 161, 291–304. https://doi.org/10.1104/pp.112.206607
Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., Sun, T., 2004. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008–1019.
Wang, L., Ding, X., Gao, Y., Yang, S., 2020. Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biol. 20, 415. https://doi.org/10.1186/s12870-020-02636-5
Wang, N., Wang, K., Li, S., Jiang, Yang, Li, L., Zhao, M., Jiang, Yue, Zhu, L., Wang, Yanfang, Su, Y., Wang, Yi, Zhang, M., 2020. Transcriptome-Wide Identification, Evolutionary Analysis, and GA Stress Response of the GRAS Gene Family in Panax ginseng C. A. Meyer. Plants . https://doi.org/10.3390/plants9020190
Wang, Y.-X., Liu, Z.-W., Wu, Z.-J., Li, H., Wang, W.-L., Cui, X., Zhuang, J., 2018. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Sci. Rep. 8, 3949. https://doi.org/10.1038/s41598-018-22275-z
Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49–e49.
Wild, M., Davière, J.-M., Cheminant, S., Regnault, T., Baumberger, N., Heintz, D., Baltz, R., Genschik, P., Achard, P., 2012. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24, 3307–3319.
Xu, K., Chen, S., Li, T., Ma, X., Liang, X., Ding, X., Liu, H., Luo, L., 2015. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol. 15, 141. https://doi.org/10.1186/s12870-015-0532-3
Xu, W., Chen, Z., Ahmed, N., Han, B., Cui, Q., Liu, A., 2016. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans. Int. J. Mol. Sci. . https://doi.org/10.3390/ijms17071004
Yoon, E.K., Dhar, S., Lee, M.-H., Song, J.H., Lee, S.A., Kim, G., Jang, S., Choi, J.W., Choe, J.-E., Kim, J.H., Lee, M.M., Lim, J., 2016. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots. Mol. Plant 9, 1197–1209. https://doi.org/https://doi.org/10.1016/j.molp.2016.06.007
Yoshida, H., Hirano, K., Sato, T., Mitsuda, N., Nomoto, M., Maeo, K., Koketsu, E., Mitani, R., Kawamura, M., Ishiguro, S., 2014. DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc. Natl. Acad. Sci. 111, 7861–7866.
Zhang, B., Liu, J., Yang, Z.E., Chen, E.Y., Zhang, C.J., Zhang, X.Y., Li, F.G., 2018. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. BMC Genomics 19, 348. https://doi.org/10.1186/s12864-018-4722-x
Zhang, D., Iyer, L.M., Aravind, L., 2012. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms. Bioinformatics 28, 2407–2411. https://doi.org/10.1093/bioinformatics/bts464
Zhang, H., Mi, L., Xu, L., Yu, C., Li, C., Chen, C., 2019. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci. Rep. 9, 2156. https://doi.org/10.1038/s41598-018-38185-z
Zhang, J., Esselink, G.D., Che, D., Fougère-Danezan, M., Arens, P., Smulders, M.J.M., 2013. The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. J. Hortic. Sci. Biotechnol. 88, 85–92.
Zhang, S., Li, X., Fan, S., Zhou, L., Wang, Y., 2020. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 151, 243–254. https://doi.org/https://doi.org/10.1016/j.plaphy.2020.03.020