The effect of pouring temperature while preparing Aluminium SiC metal matrix composites, with additional benefits of magnesium and copper through stir casting technique were investigated. The composites were fabricated by mixing 12 wt% of SiC reinforcements,4 wt% magnesium and 2 wt% copper into 6061 aluminium alloy melt at different pouring temperatures (630 ºC, 670 ºC and 710ºC). The addition of magnesium will enhance the wettability of the SiC particles with Al matrix. The inclusion of copper has considerable improvement in strength and hardness of the composite. The microstructure and mechanical properties (tensile strength and hardness) of the Al MMC are evaluated with the corresponding processing parameter, specifically pouring temperature of the cast composite.The metallurgical characterization utilizing optical and scanning electron microscope were observed for the prepared composites. The coarse microstructure and homogenous distribution of SiC particles were appeared within dendrite structures of the composites. The SiC particles has effectively distributed, and higher tensile strength and maximum hardness have occurred in composite at pouring temperature of 670ºC as compared to other composites. The mechanical properties were lower in composites prepared using lesser pouring temperature (630ºC) and significantly decreased for higher pouring temperature (710ºC) of the composites.