[1] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999; 18: 215-222.
[2] Martin-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010; 15: 31-39.
[3] Lopez JA, Sun Y, Blair PB, Mukhtar MS. TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci. 2015; 20: 238-245.
[4] Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum. Nature. 1996; 383: 794-799.
[5] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997; 386: 485-488.
[6] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell. 1997; 9: 1607-1619.
[7] Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, et al. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot. 2013; 64(18): 5673-5685.
[8] Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C. TCP transcription factors predate the emergence of land plants. J Mol Evol. 2007; 65: 23-33.
[9] Aguilar-Martinez JA, Poza-Carrion C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 2007; 19: 458-472.
[10] Nicolas M, Rodriguezbuey ML, Francozorrilla JM, Cubas P. A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Curr Biol. 2015; 25(14), 1799-1809.
[11] Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003; 425: 257-263.
[12] Kieffer M, Master V, Waites R, Davies B. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011; 68: 147-158.
[13] Broholm SK, Tahtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA. 2008; 105(26): 9117-9122.
[14] Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA. 2009; 106: 22534-22539.
[15] Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J. 2008; 53: 42-52.
[16] Resentini F, Felipo-Benavent A, Colombo L, Blazquez MA, Alabadi D, Masiero S. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol. Plant. 2015; 8(3): 482-485.
[17] Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012; 159(4): 1511-1523.
[18] Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancon C, Immink RGH, Cubas P. Abscisic acid signaling is controlled by a BRANCHED1/hd-zip I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci USA. 2017; 114(2): E245-E254.
[19] Zhou M, Li DY, Li ZG, Hu Q, Yang CH, Zhu LH, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013; 161: 1375-1391.
[20] Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, Kato T, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol. 2006, 61: 165-177.
[21] Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014; 14: 157.
[22] Guo ZH, Shu WS, Cheng HY, Wang GM, Qi KJ, Zhang SL, et al. Expression analysis of TCP genes in Peach reveals an involvement of PpTCP.A2 in ethylene biosynthesis during fruit ripening. Plant Mol Biol Rep. 2018; 36: 588-595.
[23] Pillet J, Yu HW, Chambers AH, Whitaker VM, Folta KM. Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits. J Exp Bot. 2015, 66: 4455-4467.
[24] Martin-Trillo M, Grandio EG, Serra F, Marcel F, Rodriguez-Buey ML, Schmitz G, et al. Role of tomato BRANCHED1- like genes in the control of shoot branching. Plant J. 2011; 67(4): 701-714.
[25] Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 2010; 22(4):1161-1173.
[26] Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008; 6: e230.
[27] Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007; 39, 787-791.
[28] Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav. 2014; 9: e28700.
[29] Li ST, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J, 2013; 76: 901-903.
[30] Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell. 2007; 19(2): 473-484.
[31] Wei W, Hu Y, Cui MY, Han YT, Gao K, Feng JY. Identification and transcript analysis of the TCP transcription factors in the Diploid Woodland strawberry Fragaria vesca. Front Plant Sci. 2016; 7: 1937.
[32] Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, et al (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000; 290: 2105-2110.
[33] Xu R, Sun P, Jia F, Lu L, Li Y, Zhang S, et al. Genome wide analysis of TCP transcription factor gene family in Malus domestica. J Genet. 2014; 93: 733-746.
[34] Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP transcription factors in Moso Bamboo (Phyllostachys edulis): Genome-wide identification and expression analysis. Front Plant Sci. 2018; 9: 1263.
[35] Huo YZ, Xiong WD, Su KL, Li Y, Yang YW, Fu CX, et al. Genome-wide analysis of the TCP gene family in Switchgrass (Panicum virgatum L.) Int J Genomics. 2019; 2019: 8514928.
[36] Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, et al. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants. Int J Mol Sci. 2019; 20(14): 3591.
[37] Leng XP, Jia HF, Sun X, Shangguan LF, Mu Q, Wang BJ, et al. Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep. 2015; 5: 17749.
[38] Leng XP, Mu Q, Wang XM, Li XP, Zhu XD, Shangguan LF, et al. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis. Funct Integr Genomics. 2015; 15: 673-684.
[39]Leng XP, Wang PP, Zhao PC, Wang MQ, Cui LW, Shangguan LF, et al. Conservation of microRNA-mediated regulatory networks in response to copper stress in grapevine. Plant Growth Regul. 2017; 82: 293-304.
[40] Hu B, Jin J, Guo YA, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2014; 31(8): 1296.
[41] Zhang Y, Mao L, Wang H, Brocker C, Yin XJ, Vasiliou V, et al. Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PLoS ONE. 2012; 7: e32153.
[42] Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012; 40(7): e49.
[43] Hu TH, Wei QZ, Wang WH, Hu HJ, Mao WH, Zhu QM, Bao CL. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus). PLoS One. 2018; 13(9): e0204137.
[44] Postel D, Vanlemmens P, Gode P, Ronco G, Villa P. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002; 30: 325-327.
[45] Fasoli M, DalSanto S, Zenoni S, Tornielli GB, Farina L, Zamboni A, et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012; 24: 3489-3505.
[46] Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Method Enzymol. 2006; 411: 134-193.
[47] Shangguan LF, Mu Q, Fang X, Zhang KK, Jia HF, Li XY, et al. RNA-sequencing reveals biological networks during table grapevine (‘Fujiminori’) fruit development. PLoS ONE. 2017; 12(1): e0170571.
[48] Massonnet M, Fasoli M, Tornielli GB, Altieri M, Sandri M, Zuccolotto P, et al. Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. Plant Physiol. 2017; 174: 2376-2396.
[49] Haider MS, Zhang C, Kurjogi MM, Pervaiz T, Zheng T, Zhang CB, et al. Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analys. Sci Rep. 2017; 7: 13134.
[50] Guan L, Haider MS, Khan N, Nasim M, Jiu ST, Fiaz M, et al. Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. Int J Mol Sci. 2018; 19(12): 4019.
[51] Zhu XD, Li XP, Jiu ST, Zhang KS, Wang C, et al. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. R Soc open sci. 2019; 5: 172253.
[52] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25: 402-408.
[53] Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc. 2006; 1(4): 2019-2025.
[54] Yao X, Ma H, Wang J, Zhang D. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J Integr Plant Biol. 2007; 49, 885-897.
[55] Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, Yeh CM, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. J Exp Bot. 2016; 67(17): 5051-5066.
[56] Lei N, Yu X, Li SX, Zeng CY, Zou LP, Liao WB, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep. 2017; 7: 10016.
[57] Consortium TG. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012; 485(7400): 635-641.
[58] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010; 42: 833-839.
[59] Ma J, Liu F, Wang QL, Wang KB, Jones DC, Zhang BH. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci Rep. 2016; 6: 21535.
[60] Schippers JHM. Transcriptional networks in leaf senescence. Curr Opin Plant Biol, 2015; 27: 77-83.
[61] Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol, 2017; 175: 874-885.
[62] Efroni I, Blum E, Goldshmidt A, Eshed Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell. 2008; 20: 2293-2306.
[63] Li J, Wang YZ, Zhang YX, Wang WY, Irish VF, Huang TB. RABBIT EARS regulates the transcription of TCP4 during petal development in Arabidopsis. J Exp Bot. 2016; 67: 6473-6480.
[64] Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, et al. A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol. 2013; 162, 991-1005.
[65] Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Biosci Biotechnol Biochem. 2010; 74: 2145-2147.
[66] Finlayson S. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 2007; 48: 667-677.
[67] Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA. Transcriptional control of fleshy fruit development and ripening. J Exp Bot. 2014; 65(16): 4527-4541.