Modern applications of artificial intelligence (AI) are generally algorithmic in nature and implemented using either general-purpose or application-specific hardware systems that have high power requirements. In the present study, physical (in-materio) reservoir computing (RC) implemented in hardware was explored as an alternative to software-based AI. The device, made up of a random, highly interconnected network of nonlinear Ag2Se nanojunctions, demonstrated the requisite characteristics of an in-materio reservoir, including but not limited to nonlinear switching, memory, and higher harmonic generation. As a hardware reservoir, the devices successfully performed waveform generation tasks, where tasks conducted at elevated network temperatures were found to be more stable than those conducted at room temperature. Finally, a comparison of voice classification, with and without the network device, showed that classification performance increased in the presence of the network device.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
There is NO Competing Interest.
This is a list of supplementary files associated with this preprint. Click to download.
Loading...
Posted 17 Mar, 2021
Posted 17 Mar, 2021
Modern applications of artificial intelligence (AI) are generally algorithmic in nature and implemented using either general-purpose or application-specific hardware systems that have high power requirements. In the present study, physical (in-materio) reservoir computing (RC) implemented in hardware was explored as an alternative to software-based AI. The device, made up of a random, highly interconnected network of nonlinear Ag2Se nanojunctions, demonstrated the requisite characteristics of an in-materio reservoir, including but not limited to nonlinear switching, memory, and higher harmonic generation. As a hardware reservoir, the devices successfully performed waveform generation tasks, where tasks conducted at elevated network temperatures were found to be more stable than those conducted at room temperature. Finally, a comparison of voice classification, with and without the network device, showed that classification performance increased in the presence of the network device.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Loading...