Allen TI, Hayes GP (2017) Alternative Rupture-Scaling Relationships for Subduction Interface and Other Offshore Environments. Bull Seismo Soc Am 107:1240–1253. doi: 10.1785/0120160255

Ando M (1975) Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics 27:119–140.

Baba T, Takahashi N, Kaneda Y (2014a) Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET). Mar Geophys Res 35:319–325. doi:10.1007/s11001-013-9189-1

Baba T, Takahashi N, Kaneda Y, Inazawa Y, Kikkojin M (2014b) Tsunami Inundation Modeling of the 2011 Tohoku earthquake using three-dimensional building data for Sendai, Miyagi Prefecture, Japan. In: Kontar YA, Santiago-Fandiño V, Takahashi T (eds) Tsunami Events and Lessons Learned, Advances in Natural and Technological Hazards Research. Vol. 35. Dordrecht: Springer, pp. 89–98.

Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, Okal E (2009) GPS for real-time earthquake source determination and tsunami warning systems. J Geod 83:335–343. doi:10.1007/s00190-008-0262-5

Causse M, Cotton F, Mai PM (2010) Constraining the roughness degree of slip heterogeneity. J Geophys Res 115:B05304. doi:10.1029/2009JB006747

Earthquake Research Committee, the Headquarters for Earthquake Research Promotion in Japan (2013) Evaluations of Long-Term Seismic Activity along the Nankai Trough, Second Ed. available at https://www.jishin.go.jp/main/chousa/13may_nankai/nankai_gaiyou.pdf. Accessed 26 August 2019 (in Japanese).

Earthquake Research Committee, the Headquarters for Earthquake Research Promotion in Japan (2020) Probabilistic Hazard Assessment of Tsunami due to Large Earthquakes along the Nankai Trough. available at http://www.jishin.go.jp/main/chousa/20jan_tsunami/nankai_tsunami.pdf. Accessed 24 January 2020 (in Japanese).

Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc London Ser A 241:376–396. doi: 10.1098/rspa.1957.0133

Frankel A (1991) High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults. J Geophys Res 96:6291–6302.

Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res 107:2086. doi:10.1029/2000JB000139

Goda K, Yasuda T, Mai PM, Maruyama T, Mori N (2018) Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios. In Scourse EM, Chapman NA, Tappin DR, Wallis SR (eds) Tsunamis: Geology, Hazards and Risks. Geological Society, London, Special Publications, 456, 55–74. doi:10.1144/SP456.1

González J, González G, Aránguiz R, Melgar D, Zamora N, Shrivastava MN, Das R, Catalán PA, CienfuegosR (2020) A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Nat Hazards 100:231–254. doi:10.1007/s11069-019-03809-8

Hashimoto C, Noda A, Sagiya T, Matsu’ura M (2009) Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geosci 2:141–144. doi:10.1038/NGEO421

Hashimoto C, Noda A, Matsu’ura M (2012) The Mw 9.0 northeast Japan earthquake: total rupture of a basement asperity. Geophys J Int 189:1–5. doi:10.1111/j.1365-246X.2011.05368.x

Herrero A, Bernard P (1994) A kinematic self-similar rupture process for earthquakes. Bull Seism Soc Am 84:1216–1228

Herrero A, Murphy S (2018) Self-similar slip distributions on irregular shaped faults. Geophy J Int 213:2060–2070. doi:10.1093/gji/ggy104

Ide S, Shiomi K, Mochizuki K, Tonegawa T, Kimura G (2010) Split Philippine Sea plate beneath Japan. Geophys Res Lett 37:L21304. doi:10.1029/2010GL044585

Igarashi Y, Hori T, Murata S, Sato K, Baba T, Okada M (2016) Maximum tsunami height prediction using pressure gauge data by a Gaussian process at Owase in the Kii Peninsula, Japan. Mar Geophys Res 37:361–370. doi:10.1007/s11001-016-9286-z

Ishibashi K (2004) Status of historical seismology in Japan. Annals Geophys 47:339–368.

Ishibashi M, Baba T, Takahashi N, Imai K (2018) Social Implementation of Tsunami Prediction System on Wakayama by Using DONET Information. J JSNDS 37:125–142.

Jakeman JD, Nielsen OM, VanPutten K, Mleczeko R, Burbidge D, Horspool N (2010) Towards spatially distributed quantitative assessment of tsunami inundation models. Ocean Dynamics 60:1115. doi:10.1007/s10236-010-0312-4

Kanazawa T, Uehira K, Mochizuki M, Shinbo T, Fujimoto H, Noguchi S, Kunugi T, Shiomi K, Aoi A, Matsumoto T, Sekiguchi S, Okada Y (2016) S-net project, cabled observation network for earthquakes and tsunamis. Abstract WE2B–3 presented at SubOptic 2016, Suboptic, Dubai, 18–21 Apr.

Kaneda Y, Kawaguchi K, Araki E, Matsumoto H, Nakamura T, Kamiya S, Ariyoshi K, Hori T, Baba T, Takahashi N (2015) Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. In Favali P, Beranzoli L, De Santis A (eds) Seafloor Observatories. Springer, Heidelberg, pp 643–662. doi:10.1007/978-3-642-11374-1_252

Kawaguchi K, Kaneko S, Nishida T, Komine T (2015) Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring, In Favali P, Beranzoli L, De Santis A (eds) Seafloor Observatories. Springer, Heidelberg, pp. 211–228. doi:10.1007/978-3-642-11374-1_10

Koketsu K, Miyake H, Suzuki H (2012) Japan Integrated Velocity Structure Model Version 1. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September.

Konca AO, Avouac JP, Sladen A, Meltzner AJ, Sieh K, Fang P, Li Z, Galetzka J, Genrich J, Chlieh M, Natawidjaja DH, Bock Y, Fielding EJ, Ji C, Helmberger DV (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635. doi:10.1038/nature07572

Li L, Switzer AD, Chan CH, Wang Y, Weiss R, Qiu Q (2016). How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea, J Geophys Res 121:6250–6272. doi:10.1002/2016JB013111

Maeda T, Obara K, Shinohara M, Kanazawa T, Uehira K (2015) Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real-time tsunami forecasting. Geophys Res Lett 42:7923–7932. doi:10.1002/2015GL065588

Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res 107:2308. doi:10.1029/2001JB000588

Meade BJ (2007) Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Comp Geosci 33:1064–1075. doi:10.1016/j.cageo.2006.12.003

Melger DM, Williamson AL, Salazar-Monroy EF (2019) Differences between heterogeneous and homogenous slip in regional tsunami hazards modelling. Geophys J Int 219:553–562. doi: 10.1093/gji/ggz299

Mochizuki M, Kanazawa T, Uehira K, Shimbo T, Shiomi K, Kunugi T, Aoi S, Matsumoto T, Sekiguchi S, Yamamoto-Chikasada N, Takahashi N, Shinohara M, Yamada T (2016). S-net project: Construction of large scale seafloor observatory network for tsunamis and earthquakes in Japan. Abstract NH43B-1840 presented at 2016 AGU Fall Meeting, American Geophysical Union, San Francisco, Calif., 12–16 Dec.

Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation. Science 318:1128–1131. doi:10.1126/science.1147195

Moore GF, Park JO, Bangs NL, Gulick SP, Tobin HJ, Nakamura Y, Sato S, Tsuji T, Yoro T, Tanaka H, Uraki S, Kido Y, Sanada Y, Kuramoto S, Taira A (2009) Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. In Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT, the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.102.2009

Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with

pre-seismic locking of Andean subduction zone. Nature 467:198–202. doi:10.1038/nature09349

Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. J Geophys Res 120:488–502. doi:10.1002/2014JB011301

Murphy S, Scala A, Herrero A, Lorito S, Festa G, Trasatti E, Tonini R, Romano F, Molinari I, Nielsen S (2016) Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Sci Rep 6:35007. doi:10.1038/srep35007

Murphy S, Herrero A, (2020) Surface rupture in stochastic slip models. Geophys J Int 221:1081–1089. doi: 10.1093/gji/ggaa055

Nishimura T, Yokota Y, Tadokoro K, Ochi T (2018) Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from Global Navigation Satellite System and Global Positioning System‑Acoustic data. Geosphere 14:535–551. doi:10.1130/GES01529.1

Noda A, Saito T, Fukuyama E (2018) Slip-deficit rate distribution along the Nankai trough, Southwest Japan, with elastic lithosphere and viscoelastic asthenosphere. J Geophys Res 123:8125–8142. doi:10.1029/2018JB015515

Park JO, Tsuru T, Kodaira S, Cummins PR, Kaneda Y (2002) Splay Fault Branching Along the Nankai Subduction Zone. Science 297:1157–1160. doi:10.1126/science.1074111.

Perfettini H, Avouac JP, Tavera H, Kositsky A, Nocquet JM, Bondoux F, Chlieh M, Sladen A, Audin L, Farber DL, Soler P (2010) Seismic and aseismic slip on the Central Peru megathrust. Nature 465:78–81. doi:10.1038/nature09062

Ruiz JA, Baumont D, Bernard P, Berge-Thierry C (2011) Modelling directivity of strong ground motion with a fractal, k−2, kinematic source model, Geophys J Int 186:226–244. doi:10.1111/j.1365-246X.2011.05000.x

Scala A, Lorito S, Romano F, Murphy S, Selva J, Basili R, Babeyko A, Herrero A, Hoechner A, Løvholt F, Maesano FE, Perfetti P, Tiberti MM, Tonini R, Volpe M, Davies G, Festa G, Power W, Piatanesi A, Cirella A (2020) Effect of shallow slip amplification uncertainty on probabilistic tsunami hazard analysis in subduction zones: Use of long-term balanced stochastic slip models. Pure Appl Geophys 177:1497–1520. doi:10.1007/s00024-019-02260-x

Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305.

Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab Subduction-zone earthquakes with moment magnitude. Seismo Res Lett 81:941–950. doi:10.1785/gssrl.81.6.941

Takahashi N, Imai K, Ishibashi M, Sueki K, Obayashi R, Tanabe T, Tamazawa F, Baba T, Kaneda Y (2017) Real-Time Tsunami Prediction System Using DONET. J Disast Res 12:766–774.

Takahashi N, Imai K, Sueki K, Obayashi R, Ishibashi M, Tanabe T, Baba T, Kaneda Y (2018) Real-Time Tsunami Prediction System Based on Seafloor Observatory Data Applied to the Inland Sea, Japan. Mar Tech Soc J 52:120–127.

Tatehata H (1997) The new tsunami warning system of the Japan Meteorological Agency. In Perspectives on Tsunami Hazard Reduction, edited by Hebenstreit G, pp. 175–188, Springer, New York.

Thingbaijam KKS, Mai PM, Goda K (2017) New Empirical Earthquake Source-Scaling Laws. Bull Seismo Soc Am 107:2225–2246. doi:10.1785/0120170017

Titof VV, González FI, Bernard EN, Eble MC, Mofjeld HO, Newman JC, Venturato AJ (2005) Real-time tsunami forecasting: Challenges and solutions. Nat Hazards 35:41–58.

Tsushima H, Hino R, Fujimoto H, Tanioka Y, Imamura F (2009) Near-field tsunami forecasting from cabled ocean bottom pressure data. J Geophys Res 114:B06309. doi:10.1029/2008JB005988

Tsushima H, Hirata K, Hayashi Y, Tanioka Y, Kimura K, Sakai S, Shinohara M, Kanazawa Y, Hino R, Maeda K (2011) Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space 63:821–826. doi:10.5047/eps.2011.06.052

Tsushima H, Hino R, Tanioka Y, Imamura F, Fujimoto H (2012) Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. J Geophys Res 117:B03311. doi:10.1029/2011JB008877

Tsushima H, Hino R, Ohta Y, Iinuma T, Miura S (2014). tFISH/RAPiD: Rapid improvement of near-field tsunami forecasting based on offshore tsunami data by incorporating onshore GNSS data. Geophys Res Lett 41:3390–3397. doi:10.1002/2014GL059863

Uehira K, Kanazawa T, Mochizuki M, Fujimoto H, Noguchi S, Shinbo T, Shiomi K, Kunugi T, Aoi S, Matsumoto T, Sekiguchi S, Okada Y, Shinohara M, Yamada T (2016) Outline of seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net), Abstract EGU2016-13832 presented at EGU General Assembly 2016, European Geosciences Union, Vienna, Austria, 17–22 Apr.

Watanabe S, Bock Y, Melgar D, Tadokoro K (2018) Tsunami scenarios based on interseismic models along the Nankai trough, Japan, from seafloor and onshore geodesy. J Geophys Res 123:2448–2461. doi:10.1002/2017JB014799

Wessel P, Smith WHF (1998) New, Improved Version of Generic Mapping Tools Released. EOS 79:579.

Yamamoto N, Aoi S, Hirata K, Suzuki W, Kunugi T, Nakamura H (2016a) Multi‑index method using offshore ocean‑bottom pressure data for real‑time tsunami forecast. Earth Planet Space 68:128. doi:10.1186/s40623-016-0500-7

Yamamoto N, Hirata K, Aoi S, Suzuki W, Nakamura H, Kunugi T (2016b) Rapid estimation of tsunami source centroid location using a dense offshore observation network. Geophys Res Lett. 43:4263–4269. doi:10.1002/2016GL068169

Yokota Y, Ishikawa T, Watanabe S, Tashiro T, Asada A (2016) Seafloor geodetic constrains on interplate coupling of the Nankai Trough megathrust zone, Nature 534:374–377. doi:10.1038/nature17632.

Zeng Y, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic strong ground motions. Geophys Res Lett 21:725–728.