[1]. Pandian, J.D., et al., Prevention of stroke: a global perspective. Lancet, 2018. 392(10154): p. 1269-1278.
[2]. Donnan, G.A., et al., Stroke. Lancet, 2008. 371(9624): p. 1612-23.
[3]. Kataoka, H., et al., Results of Prospective Cohort Study on Symptomatic Cerebrovascular Occlusive Disease Showing Mild Hemodynamic Compromise [Japanese Extracranial-Intracranial Bypass Trial (JET)-2 Study]. Neurol Med Chir (Tokyo), 2015. 55(6): p. 460-8.
[4]. Derdeyn, C.P., et al., Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet, 2014. 383(9914): p. 333-41.
[5]. Liu, P., J.B. De Vis and H. Lu, Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage, 2019. 187: p. 104-115.
[6]. Gupta, A., et al., Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Stroke, 2012. 43(11): p. 2884-91.
[7]. Smeeing, D.P., et al., Arterial Spin Labeling and Blood Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Cerebrovasc Dis, 2016. 42(3-4): p. 288-307.
[8]. Chen, D.W., et al., Assessment of the Cerebral Hemodynamic Benefits of Carotid Artery Stenting for Patients with Preoperative Hemodynamic Impairment Using Cerebral Single Photon Emission Computed Tomography (SPECT) and Carbon Dioxide Inhalation. Med Sci Monit, 2018. 24: p. 5398-5404.
[9]. Boudiaf, N., et al., BOLD fMRI of cerebrovascular reactivity in the middle cerebral artery territory: A 100 volunteers' study. J Neuroradiol, 2015. 42(6): p. 338-44.
[10]. Choksi, V., et al., Transient neurologic deficit after acetazolamide challenge for computed tomography perfusion imaging. J Comput Assist Tomogr, 2005. 29(2): p. 278-80.
[11]. De Bortoli, M., et al., [Cerebral vasoreactivity: Concordance of breath holding test and acetazolamide injection in current practice: 20 cases of asymptomatic carotid artery stenosis]. J Med Vasc, 2017. 42(5): p. 272-281.
[12]. Seo, H.J., et al., Hemodynamic Significance of Internal Carotid or Middle Cerebral Artery Stenosis Detected on Magnetic Resonance Angiography. Yonsei Med J, 2015. 56(6): p. 1686-93.
[13]. Thomas, B.P., et al., Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage, 2013. 83: p. 505-12.
[14]. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 2013. 310(20): p. 2191-4.
[15]. Al, H.M. and R. Murugan, Stenting versus aggressive medical therapy for intracranial arterial stenosis: more harm than good. Crit Care, 2012. 16(3): p. 310.
[16]. Gruner, J.M., et al., Brain perfusion CT compared with15O-H2O-PET in healthy subjects. EJNMMI Res, 2011. 1(1): p. 28.
[17]. Muscas, G., et al., Feasibility and safety of intraoperative BOLD functional MRI cerebrovascular reactivity to evaluate extracranial-to-intracranial bypass efficacy. Neurosurg Focus, 2019. 46(2): p. E7.
[18]. Taneja, K., et al., Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magn Reson Imaging, 2019. 59: p. 46-52.
[19]. Sebok, M., et al., BOLD cerebrovascular reactivity as a novel marker for crossed cerebellar diaschisis. Neurology, 2018. 91(14): p. e1328-e1337.
[20]. Fierstra, J., et al., Staging Hemodynamic Failure With Blood Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity: A Comparison Versus Gold Standard ((15)O-)H2O-Positron Emission Tomography. Stroke, 2018. 49(3): p. 621-629.
[21]. Choi, J.W., et al., Neural Correlates of Motor Recovery Measured by SPECT at Six Months After Basal Ganglia Stroke. Ann Rehabil Med, 2017. 41(6): p. 905-914.
[22]. Eicker, S.O., et al., A comparative study of perfusion CT and 99m Tc-HMPAO SPECT measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion. Eur J Med Res, 2011. 16(11): p. 484-90.