Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis
In this work, 3D C f /SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced x-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution and mechanical properties of the composites were uncovered. With the addition of DCP initiator, the liquid precursor can cross-link to solid-state at 120 °C. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm -3 and ~10%, respectively, which are 143.0% higher and 30.3% lower compared with the composites without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Posted 11 Aug, 2020
Invitations sent on 13 Aug, 2020
On 13 Aug, 2020
Received 13 Aug, 2020
On 06 Aug, 2020
On 05 Aug, 2020
On 05 Aug, 2020
Received 30 Jun, 2020
On 30 Jun, 2020
Received 17 Jun, 2020
Received 16 Jun, 2020
On 08 Jun, 2020
On 05 Jun, 2020
Invitations sent on 04 Jun, 2020
On 04 Jun, 2020
On 30 May, 2020
On 29 May, 2020
On 29 May, 2020
On 29 May, 2020
Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis
Posted 11 Aug, 2020
Invitations sent on 13 Aug, 2020
On 13 Aug, 2020
Received 13 Aug, 2020
On 06 Aug, 2020
On 05 Aug, 2020
On 05 Aug, 2020
Received 30 Jun, 2020
On 30 Jun, 2020
Received 17 Jun, 2020
Received 16 Jun, 2020
On 08 Jun, 2020
On 05 Jun, 2020
Invitations sent on 04 Jun, 2020
On 04 Jun, 2020
On 30 May, 2020
On 29 May, 2020
On 29 May, 2020
On 29 May, 2020
In this work, 3D C f /SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced x-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution and mechanical properties of the composites were uncovered. With the addition of DCP initiator, the liquid precursor can cross-link to solid-state at 120 °C. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm -3 and ~10%, respectively, which are 143.0% higher and 30.3% lower compared with the composites without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11