Tobacco rattle virus -induced gene silencing in Hevea brasiliensis
Background
Since it is very difficult to obtain gene knockouts in rubber tree (Hevea Brasiliensis) due to low genetic transformation efficiency. Virus-induced gene silencing (VIGS) is a powerful gene silencing tool that has been intensively applied in plant. Up to now, the application of VIGS in rubber tree has not yet been reported.
Results
Hevea brasiliensis phytoene desaturase (HbPDS) was identified in H. brasiliensis genome. The prediction of small interfering RNAs (siRNAs) from HbPDS and the silencing gene fragment (SGF) were predicted and a length of 409 bp SGF was chosen to be tested. We show that the tobacco rattle virus (TRV) -VIGS is able to induce effective HbPDS silencing in rubber tree. The TRV-VIGS system has the potential for functional gene studies in rubber tree.
Conclusions
This is the first time to report VIGS in rubber tree. The present TRV-VIGS method could be further applied to produce gene silenced rubber tree plants, to advance functional gene of rubber tree. The applied TRV-VIGS method will achieve deeper underground into the natural rubber biosynthesis and regulation in this important rubber-producing plant.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Posted 04 Jun, 2020
Tobacco rattle virus -induced gene silencing in Hevea brasiliensis
Posted 04 Jun, 2020
Background
Since it is very difficult to obtain gene knockouts in rubber tree (Hevea Brasiliensis) due to low genetic transformation efficiency. Virus-induced gene silencing (VIGS) is a powerful gene silencing tool that has been intensively applied in plant. Up to now, the application of VIGS in rubber tree has not yet been reported.
Results
Hevea brasiliensis phytoene desaturase (HbPDS) was identified in H. brasiliensis genome. The prediction of small interfering RNAs (siRNAs) from HbPDS and the silencing gene fragment (SGF) were predicted and a length of 409 bp SGF was chosen to be tested. We show that the tobacco rattle virus (TRV) -VIGS is able to induce effective HbPDS silencing in rubber tree. The TRV-VIGS system has the potential for functional gene studies in rubber tree.
Conclusions
This is the first time to report VIGS in rubber tree. The present TRV-VIGS method could be further applied to produce gene silenced rubber tree plants, to advance functional gene of rubber tree. The applied TRV-VIGS method will achieve deeper underground into the natural rubber biosynthesis and regulation in this important rubber-producing plant.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8