Programmable quantum simulators such as superconducting quantum processors and ultracold atomic lattices represent rapidly developing emergent technology that may one day qualitatively outperform existing classical computers. Yet, apart from a few breakthroughs, the range of viable computational applications with current-day noisy intermediate-scale quantum (NISQ) devices is still significantly limited by gate errors, quantum decoherence, and the number of high-quality qubits. In this work, we develop an approach that places NISQ hardware as a particularly suitable platform for simulating multi-dimensional condensed matter systems, including lattices beyond three dimensions which are difficult to realize or probe in other settings. By fully exploiting the exponentially large Hilbert space of a quantum chain, we encoded a high-dimensional model in terms of non-local many-body interactions that can further be systematically transcribed into quantum gates. We demonstrate the power of our approach by realizing, on IBM transmon-based quantum computers, higher-order topological states in up to four dimensions, which are exotic phases that have never been realized in any quantum setting. With the aid of in-house circuit compression and error mitigation techniques, we measured the topological state dynamics and their protected mid-gap spectra to a high degree of accuracy, as benchmarked by reference exact diagonalization data. The resources needed with our approach scale favorably with system size and lattice dimensionality compared to classical numerical computation in a general setting — our findings thus present a tantalizing route to useful quantum advantage.