1 Chan, J. F. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9, 221-236, doi:10.1080/22221751.2020.1719902 (2020).
2 Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269, doi:10.1038/s41586-020-2008-3 (2020).
3 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
4 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
5 Alm, E. et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveill 25, doi:10.2807/1560-7917.ES.2020.25.32.2001410 (2020).
6 Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812-827 e819, doi:10.1016/j.cell.2020.06.043 (2020).
7 Mercatelli, D. & Giorgi, F. M. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front Microbiol 11, 1800, doi:10.3389/fmicb.2020.01800 (2020).
8 Furuse, Y. Genomic sequencing effort for SARS-CoV-2 by country during the pandemic. Int J Infect Dis 103, 305-307, doi:10.1016/j.ijid.2020.12.034 (2020).
9 Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87, E1-9, doi:10.1161/01.res.87.5.e1 (2000).
10 Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41, 1141-1149, doi:10.1038/s41401-020-0485-4 (2020).
11 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569, doi:10.1038/s41564-020-0688-y (2020).
12 Li, M. Y., Li, L., Zhang, Y. & Wang, X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9, 45, doi:10.1186/s40249-020-00662-x (2020).
13 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 183, 1735, doi:10.1016/j.cell.2020.11.032 (2020).
14 Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448, doi:10.1126/science.abb2762 (2020).
15 Liu, S. et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363, 938-947, doi:10.1016/S0140-6736(04)15788-7 (2004).
16 Podder, S., Ghosh, A. & Ghosh, T. Mutations in membrane-fusion subunit of spike glycoprotein play crucial role in the recent outbreak of COVID-19. J Med Virol, doi:10.1002/jmv.26598 (2020).
17 van Dorp, L. et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol 83, 104351, doi:10.1016/j.meegid.2020.104351 (2020).
18 Wrobel, A. G. et al. Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2. Nat Commun 12, 837, doi:10.1038/s41467-021-21006-9 (2021).
19 Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 27, 763-767, doi:10.1038/s41594-020-0468-7 (2020).
20 Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 6, eabb5813, doi:10.1126/sciadv.abb5813 (2020).
21 Robson, F. et al. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell 80, 1136-1138, doi:10.1016/j.molcel.2020.11.048 (2020).
22 Yao, H. et al. Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discov 6, 76, doi:10.1038/s41421-020-00226-1 (2020).
23 Lorenzo-Redondo, R. et al. A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine 62, 103112, doi:10.1016/j.ebiom.2020.103112 (2020).
24 Mueller, N. F. et al. Viral genomes reveal patterns of the SARS-CoV-2 outbreak in Washington State. medRxiv, doi:10.1101/2020.09.30.20204230 (2020).
25 Volz, E. et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, doi:10.1016/j.cell.2020.11.020 (2020).
26 Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, 2020.2012.2021.20248640, doi:10.1101/2020.12.21.20248640 (2020).
27 Tang, J. W., Tambyah, P. A. & Hui, D. S. Emergence of a new SARS-CoV-2 variant in the UK. J Infect, doi:10.1016/j.jinf.2020.12.024 (2020).
28 Kirby, T. New variant of SARS-CoV-2 in UK causes surge of COVID-19. Lancet Respir Med 9, e20-e21, doi:10.1016/S2213-2600(21)00005-9 (2021).
29 Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295-1310 e1220, doi:10.1016/j.cell.2020.08.012 (2020).
30 Wise, J. Covid-19: The E484K mutation and the risks it poses. BMJ 372, n359, doi:10.1136/bmj.n359 (2021).
31 Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, doi:10.1016/j.cell.2021.01.007 (2021).
32 Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516-527, doi:10.1038/s41586-020-2798-3 (2020).
33 Gohl, D. M. et al. A rapid, cost-effective tailed amplicon method for sequencing SARS-CoV-2. BMC Genomics 21, 863, doi:10.1186/s12864-020-07283-6 (2020).
34 Zuckerman, N. S. et al. Comprehensive Analyses of SARS-CoV-2 Transmission in a Public Health Virology Laboratory. Viruses 12, doi:10.3390/v12080854 (2020).
35 Baker, D. J. et al. CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes. Genome Med 13, 21, doi:10.1186/s13073-021-00839-5 (2021).
36 Huang, J. & Zhao, L. A high-throughput strategy for COVID-19 testing based on next-generation sequencing. medRxiv, doi:10.1101/2020.06.12.20129718 (2020).
37 Itokawa, K., Sekizuka, T., Hashino, M., Tanaka, R. & Kuroda, M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS One 15, e0239403, doi:10.1371/journal.pone.0239403 (2020).