1 Roth, G. A. et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol 76, 2982-3021, doi:10.1016/j.jacc.2020.11.010 (2020).
2 Babcock, R. H. Rest in the treatment of diseases of the heart. Read at the Meeting of the Tri-State Medical Society at Jacksonville Ill. JAMA XXIII, 739-741, doi:10.1001/jama.1894.02421250001001 (1894).
3 Martino, T. A. & Sole, M. J. Molecular time: an often overlooked dimension to cardiovascular disease. Circ Res 105, 1047-1061, doi:10.1161/CIRCRESAHA.109.206201 (2009).
4 Martino, T. A. & Young, M. E. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. J Biol Rhythms 30, 183-205, doi:10.1177/0748730415575246 (2015).
5 Allen, C., Glasziou, P. & Del Mar, C. Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet 354, 1229-1233, doi:10.1016/s0140-6736(98)10063-6 (1999).
6 Ayas, N. T. et al. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med 163, 205-209 (2003).
7 Alibhai, F. J., Tsimakouridze, E. V., Reitz, C. J., Pyle, W. G. & Martino, T. A. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System. Can J Cardiol, doi:10.1016/j.cjca.2015.01.015 (2015).
8 Eckle, T. Editorial: Health Impact and Management of a Disrupted Circadian Rhythm and Sleep in Critical Illnesses. Curr Pharm Des 21, 3428-3430, doi:10.2174/1381612821999150709123504 (2015).
9 Daghlas, I. et al. Sleep Duration and Myocardial Infarction. J Am Coll Cardiol 74, 1304-1314, doi:10.1016/j.jacc.2019.07.022 (2019).
10 Wong, P. M., Hasler, B. P., Kamarck, T. W., Muldoon, M. F. & Manuck, S. B. Social Jetlag, Chronotype, and Cardiometabolic Risk. J Clin Endocrinol Metab 100, 4612-4620, doi:10.1210/jc.2015-2923 (2015).
11 Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89-92 (1986).
12 Reitz, C. J. & Martino, T. A. Disruption of Circadian Rhythms and Sleep on Critical Illness and the Impact on Cardiovascular Events. Curr Pharm Des 21, 3505-3511, doi:10.2174/1381612821666150706105926 (2015).
13 Rana, S., Prabhu, S. D. & Young, M. E. Chronobiological Influence Over Cardiovascular Function: The Good, the Bad, and the Ugly. Circ Res 126, 258-279, doi:10.1161/CIRCRESAHA.119.313349 (2020).
14 Thosar, S. S., Butler, M. P. & Shea, S. A. Role of the circadian system in cardiovascular disease. J Clin Invest 128, 2157-2167, doi:10.1172/JCI80590 (2018).
15 Provencio, I. & Foster, R. G. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694, 183-190 (1995).
16 Martino, T. A. et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 49, 1104-1113, doi:10.1161/HYPERTENSIONAHA.106.083568 (2007).
17 Martino, T. A. et al. The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol 57, 2020-2028, doi:10.1016/j.jacc.2010.11.022 (2011).
18 Tsimakouridze, E. V. et al. Chronomics of pressure overload-induced cardiac hypertrophy in mice reveals altered day/night gene expression and biomarkers of heart disease. Chronobiol Int 29, 810-821, doi:10.3109/07420528.2012.691145 (2012).
19 Alibhai, F. J. et al. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 114, 1713-1722, doi:10.1161/CIRCRESAHA.114.302995 (2014).
20 Bennardo, M. et al. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 311, R1243-R1254, doi:10.1152/ajpregu.00200.2016 (2016).
21 Reitz, C. J. et al. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2, 353, doi:10.1038/s42003-019-0595-z (2019).
22 Blume, C., Garbazza, C. & Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl) 23, 147-156, doi:10.1007/s11818-019-00215-x (2019).
23 Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073, doi:10.1126/science.1067262 (2002).
24 Takahashi, J. S., DeCoursey, P. J., Bauman, L. & Menaker, M. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308, 186-188, doi:10.1038/308186a0 (1984).
25 Clarke, J. M., Hamer, J., Shelton, J. R., Taylor, S. & Venning, G. R. The rhythm of the normal human heart. Lancet 1, 508-512 (1976).
26 Millar-Craig, M. W., Bishop, C. N. & Raftery, E. B. Circadian variation of blood-pressure. Lancet 1, 795-797 (1978).
27 Martin, T. G. & Kirk, J. A. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 148, 89-102, doi:10.1016/j.yjmcc.2020.08.018 (2020).
28 Hamdani, N. et al. Sarcomeric dysfunction in heart failure. Cardiovasc Res 77, 649-658, doi:10.1093/cvr/cvm079 (2008).
29 Lorenzen-Schmidt, I., Clarke, S. B. & Pyle, W. G. The neglected messengers: Control of cardiac myofilaments by protein phosphatases. J Mol Cell Cardiol 101, 81-89, doi:10.1016/j.yjmcc.2016.10.002 (2016).
30 Belin, R. J. et al. Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure. Circ Res 101, 195-204, doi:10.1161/CIRCRESAHA.107.148288 (2007).
31 Hwang, P. M. & Sykes, B. D. Targeting the sarcomere to correct muscle function. Nat Rev Drug Discov 14, 313-328, doi:10.1038/nrd4554 (2015).
32 Podobed, P. et al. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 307, R121-137, doi:10.1152/ajpregu.00011.2014 (2014).
33 Sachan, N. et al. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res 108, 437-445, doi:10.1161/CIRCRESAHA.110.235309 (2011).
34 Goetze, J. P. et al. Cardiac natriuretic peptides. Nat Rev Cardiol 17, 698-717, doi:10.1038/s41569-020-0381-0 (2020).
35 Gaspar-Pereira, S. et al. The NF-kappaB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol 180, 929-939, doi:10.1016/j.ajpath.2011.11.007 (2012).
36 Xu, W. et al. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep 13, 533-545, doi:10.1016/j.celrep.2015.09.023 (2015).
37 Xie, L. et al. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol 80, 156-165, doi:10.1016/j.yjmcc.2015.01.007 (2015).
38 Buyandelger, B. et al. Genetics of mechanosensation in the heart. J Cardiovasc Transl Res 4, 238-244, doi:10.1007/s12265-011-9262-6 (2011).
39 Laskowski, K. R. & Russell, R. R., 3rd. Uncoupling proteins in heart failure. Curr Heart Fail Rep 5, 75-79, doi:10.1007/s11897-008-0013-1 (2008).
40 Cardoso, A. C. et al. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat Metab 2, 167-178 (2020).
41 Lim, D. S., Roberts, R. & Marian, A. J. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J Am Coll Cardiol 38, 1175-1180, doi:10.1016/s0735-1097(01)01509-1 (2001).
42 Shukla, S. K. et al. HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci Rep 7, 4590, doi:10.1038/s41598-017-04469-z (2017).
43 Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111, 16219-16224, doi:10.1073/pnas.1408886111 (2014).
44 Young, M. E., Razeghi, P., Cedars, A. M., Guthrie, P. H. & Taegtmeyer, H. Intrinsic Diurnal Variations in Cardiac Metabolism and Contractile Function. Circulation Research 89, 1199-1208, doi:10.1161/hh2401.100741 (2001).
45 Martino, T. A. et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294, R1675-1683, doi:10.1152/ajpregu.00829.2007 (2008).
46 Muller, J. E., Tofler, G. H. & Stone, P. H. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79, 733-743, doi:10.1161/01.cir.79.4.733 (1989).
47 Scheer, F. A. et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A 107, 20541-20546, doi:10.1073/pnas.1006749107 (2010).
48 Krittanawong, C. et al. Association between short and long sleep durations and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care, 2048872617741733, doi:10.1177/2048872617741733 (2017).
49 Javaheri, S. et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation 97, 2154-2159, doi:10.1161/01.cir.97.21.2154 (1998).