[1] Abd El-Aziz, T. M.; Stockand, J. D. Recent Progress and Challenges in Drug Development against COVID-19 Coronavirus (SARS-CoV-2) - an Update on the Status. Infect. Genet. Evol., 2020, 83 (April), 104327. https://doi.org/10.1016/j.meegid.2020.104327.
[2] Ibrahim, I. M.; Abdelmalek, D. H.; Elshahat, M. E.; Elfiky, A. A. COVID-19 Spike-Host Cell Receptor GRP78 Binding Site Prediction. J. Infect., 2020, 80 (5), 554–562. https://doi.org/10.1016/j.jinf.2020.02.026.
[3] Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science (80-. )., 2020, 367 (6485), 1444–1448. https://doi.org/10.1126/science.abb2762.
[4] Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges. Int. J. Antimicrob. Agents, 2020, 55 (3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924.
[5] Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The Crystal Structure of COVID-19 Main Protease in Complex with an Inhibitor N3. PDB release, 2020, 119 (February), 17–20. https://doi.org/10.2210/PDB6LU7/PDB.
[6] Shi, Y.; Zhang, X.; Mu, K.; Peng, C.; Zhu, Z.; Wang, X.; Yang, Y.; Xu, Z.; Zhu, W. D3Targets-2019-NCoV: A Webserver for Predicting Drug Targets and for Multi-Target and Multi-Site Based Virtual Screening against COVID-19. Acta Pharm. Sin. B, 2020, No. xxx. https://doi.org/10.1016/j.apsb.2020.04.006.
[7] Dinesh, D. C.; Chalupska, D.; Silhan, J.; Veverka, V.; Boura, E. Structural Basis of RNA Recognition by the SARS-CoV-2 Nucleocapsid Phosphoprotein. bioRxiv, 2020, 2020.04.02.022194. https://doi.org/10.1101/2020.04.02.022194.
[8] Lung, J.; Lin, Y. S.; Yang, Y. H.; Chou, Y. L.; Shu, L. H.; Cheng, Y. C.; Liu, H. Te; Wu, C. Y. The Potential Chemical Structure of Anti-SARS-CoV-2 RNA-Dependent RNA Polymerase. J. Med. Virol., 2020, 92 (6), 693–697. https://doi.org/10.1002/jmv.25761.
[9] Ferreira, L. G.; Dos Santos, R. N.; Oliva, G.; Andricopulo, A. D. Molecular Docking and Structure-Based Drug Design Strategies; 2015; Vol. 20. https://doi.org/10.3390/molecules200713384.
[10] Luque, F. J. Frontiers in Computational Chemistry for Drug Discovery. Molecules, 2018, 23 (11). https://doi.org/10.3390/molecules23112872.
[11] Pirhadi, S.; Sunseri, J.; Koes, D. R. Open Source Molecular Modeling. J. Mol. Graph. Model., 2016, 69, 127–143. https://doi.org/10.1016/j.jmgm.2016.07.008.
[12] Miteva, M. A.; Violas, S.; Montes, M.; Gomez, D.; Tuffery, P.; Villoutreix, B. O. FAF-Drugs: Free ADME/Tox Filtering of Compound Collections. Nucleic Acids Res., 2006, 34 (WEB. SERV. ISS.), 738–744. https://doi.org/10.1093/nar/gkl065.
[13] De Clercq, E. Antiviral Metal Complexes. Met. Based. Drugs, 1997, 4 (3), 173–192. https://doi.org/10.1155/MBD.1997.173.
[14] Biju, S.; Parac-Vogt, T. N. Recent Advances in Lanthanide Based Nano-Architectures as Probes for Ultra High-Field Magnetic Resonance Imaging. Curr. Med. Chem., 2018, 27 (3), 352–361. https://doi.org/10.2174/0929867325666180201110244.
[15] Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S. J.; Esghaei, M.; et al. Inhibition of H1N1 Influenza Virus Infection by Zinc Oxide Nanoparticles: Another Emerging Application of Nanomedicine. J. Biomed. Sci., 2019, 26 (1), 1–10. https://doi.org/10.1186/s12929-019-0563-4.
[16] Langland, J.; Jacobs, B.; Wagner, C. E.; Ruiz, G.; Cahill, T. M. Antiviral Activity of Metal Chelates of Caffeic Acid and Similar Compounds towards Herpes Simplex, VSV-Ebola Pseudotyped and Vaccinia Viruses. Antiviral Res., 2018, 160, 143–150. https://doi.org/10.1016/j.antiviral.2018.10.021.
[17] Hadjiadamou, I.; Vlasiou, M.; Spanou, S.; Simos, Y.; Papanastasiou, G.; Kontargiris, E.; Dhima, I.; Ragos, V.; Karkabounas, S.; Drouza, C.; et al. Synthesis of Vitamin E and Aliphatic Lipid Vanadium(IV) and (V) Complexes, and Their Cytotoxic Properties. J. Inorg. Biochem., 2020, No. Iv, 111074. https://doi.org/10.1016/j.jinorgbio.2020.111074.
[18] Drouza, C.; Vlasiou, M.; Keramidas, A. D. Vanadium(IV/V)-p-Dioxolene Temperature Induced Electron Transfer Associated with Ligation/Deligation of Solvent Molecules. Dalton Trans., 2013, 42 (33), 11831–11840. https://doi.org/10.1039/c3dt50619c.
[19] Drouza, C.; Vlasiou, M.; Keramidas, A. D. Synthesis, Characterization of Dinuclear Vanadium(III) Hydroquinonate- Iminodiacetate Complexes. Inorganica Chim. Acta, 2014, 420, 103–111. https://doi.org/10.1016/j.ica.2013.12.033.
[20] Wakui, N.; Yoshino, R.; Yasuo, N.; Ohue, M.; Sekijima, M. Exploring the Selectivity of Inhibitor Complexes with Bcl-2 and Bcl-XL: A Molecular Dynamics Simulation Approach. J. Mol. Graph. Model., 2018, 79, 166–174. https://doi.org/10.1016/j.jmgm.2017.11.011.
[21] Rocha, J. A.; Rego, N. C. S.; Carvalho, B. T. S.; Silva, F. I.; Sousa, J. A.; Ramos, R. M.; Passos, I. N. G.; De Moraes, J.; Leite, J. R. S. A.; Lima, F. C. A. Computational Quantum Chemistry, Molecular Docking, and ADMET Predictions of Imidazole Alkaloids of Pilocarpus Microphyllus with Schistosomicidal Properties. PLoS One, 2018, 13 (6), 1–23. https://doi.org/10.1371/journal.pone.0198476.
[22] Hayakawa, D.; Sawada, N.; Watanabe, Y.; Gouda, H. A Molecular Interaction Field Describing Nonconventional Intermolecular Interactions and Its Application to Protein–Ligand Interaction Prediction. J. Mol. Graph. Model., 2020, 96, 107515. https://doi.org/10.1016/j.jmgm.2019.107515
[23] Yin, Y.; Sun, Y.; Zhao, L.; Pan, J.; Feng, Y. Medicinal Chemistry Based Amides as Potent S6K1 Inhibitors †. 2020. https://doi.org/10.1039/c9md00537d.
[24] Ercan, S.; Şenses, Y. Design and Molecular Docking Studies of New Inhibitor Candidates for EBNA1 DNA Binding Site: A Computational Study. Mol. Simul., 2020, 46 (4), 332–339. https://doi.org/10.1080/08927022.2019.1709638.
[25] Çakmak, E.; Özbakır Işın, D. A Theoretical Evaluation on Free Radical Scavenging Activity of 3-Styrylchromone Derivatives: The DFT Study. J. Mol. Model., 2020, 26 (5). https://doi.org/10.1007/s00894-020-04368-7.
[26] Tian, Y.; Chen, W.; Zhao, Z.; Xu, L.; Tong, B. Interaction and Selectivity of 14-Crown-4 Derivatives with Li+, Na+, and Mg2+ Metal Ions. J. Mol. Model., 2020, 26 (4). https://doi.org/10.1007/s00894-020-4325-8.
[27] Mendizabal, F.; Miranda-Rojas, S.; Castro-Latorre, P. Quantum Chemistry Simulation of the Electronic Properties in [Au(NH3)2]NO3 and [Au(NCH)2][AuCl4] Extended Unsupported Complexes. Mol. Simul., 2020, 0 (0), 1–9. https://doi.org/10.1080/08927022.2020.1735634.
[28] Praski, A.; Jaworska, M.; Lodowski, P. Structure and Electronic Spectra of Neutral and Protonated Forms of Anticonvulsant Drug Lamotrigine. J. Mol. Model., 2020, 26 (3). https://doi.org/10.1007/s00894-019-4266-2.
[29] Mohd Amin, S. N.; Md Idris, M. H.; Selvaraj, M.; Mohd Amin, S. N.; Jamari, H.; Kek, T. L.; Salleh, M. Z. Virtual Screening, ADME Study, and Molecular Dynamic Simulation of Chalcone and Flavone Derivatives as 5-Lipoxygenase (5-LO) Inhibitor. Mol. Simul., 2020, 46 (6), 487–496. https://doi.org/10.1080/08927022.2020.1732961.