Abreu-Harbich, L., Labaki, L., & Matzarakis, A. (2012). Different Trees and configuration as microclimate control strategy in Tropics. Paper presented at the Proceedings of the international conference on passive and low energy architecture.
Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2014). Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theoretical and applied climatology, 115(1-2), 333-340. doi:https://doi.org/10.1007/s00704-013-0886-0
Acero, J. A., & Herranz-Pascual, K. (2015). A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 93, 245-257. doi:https://doi.org/10.1016/j.buildenv.2015.06.028
Ahmed, K. S. (2003). Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy and Buildings, 35(1), 103-110. doi:https://doi.org/10.1016/S0378-7788(02)00085-3
Akbari, H., & Teshnehdel, S. (2018). Climatic Compatibility of Courtyard Houses, Based on Shading-sunlit Index; Case Studies: Traditional Houses in Kashan & Ardabil Cities. Armanshahr architecture & urban development, 11(24), 13.
Andreou, E. (2013). Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 55, 182-188. doi:https://doi.org/10.1016/j.renene.2012.12.040
Armson, D., Rahman, M. A., & Ennos, A. R. (2013). A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboriculture & Urban Forestry, 39(4), 157-164.
Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13(3-4), 373-384. doi:https://doi.org/10.1016/S1364-8152(98)00042-5
Bueno-Bartholomei, C. L., & Labaki, L. C. (2003). How much does the change of species of trees affect their solar radiation attenuation. Paper presented at the International conference on urban climate.
Cheng, V., Ng, E., Chan, C., & Givoni, B. (2012). Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International journal of Biometeorology, 56(1), 43-56. doi:https://doi.org/10.1007/s00484-010-0396-z
Crewe, K., Brazel, A., & Middel, A. (2016). Desert New Urbanism: testing for comfort in downtown Tempe, Arizona. Journal of Urban Design, 21(6), 746-763.
Czáder, K., Balczó, M., & Eichhorn, J. (2009). Modelling of flow and dispersion in a street canyon with vegetation by means of numerical simulation. Paper presented at the Proceedings of the XXIII. MicroCAD International Scientific Conference, Miskolc, Hungary.
De Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109. doi:https://doi.org/10.1016/j.landurbplan.2015.02.008
Deng, J., Pickles, B. J., Smith, S. T., & Shao, L. (2020). Infrared radiative performance of urban trees: spatial distribution and interspecific comparison among ten species in the UK by in-situ spectroscopy. Building and Environment, 172, 106682. doi:https://doi.org/10.1016/j.buildenv.2020.106682
Galvão, Á., Gerritsma, M., & De Maerschalck, B. (2008). hp-Adaptive least squares spectral element method for hyperbolic partial differential equations. Journal of Computational and Applied Mathematics, 215(2), 409-418. doi:https://doi.org/10.1016/j.cam.2006.03.063
Gromke, C., & Ruck, B. (2007). Influence of trees on the dispersion of pollutants in an urban street canyon—experimental investigation of the flow and concentration field. Atmospheric Environment, 41(16), 3287-3302.
Hami, A., Abdi, B., Zarehaghi, D., & Maulan, S. B. (2019). Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants’ attributes. Sustainable Cities and Society, 101634. doi:https://doi.org/10.1016/j.scs.2019.101634
Johansson, E., & Emmanuel, R. (2006). The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. International journal of Biometeorology, 51(2), 119-133. doi:https://doi.org/10.1007/s00484-006-0047-6
Kong, L., Lau, K. K.-L., Yuan, C., Chen, Y., Xu, Y., Ren, C., & Ng, E. (2017). Regulation of outdoor thermal comfort by trees in Hong Kong. Sustainable Cities and Society, 31, 12-25.
Köppen, W., & Geiger, R. (1930). Handbuch der klimatologie (Vol. 1): Gebrüder Borntraeger Berlin.
Kotharkar, R., Bagade, A., & Ramesh, A. (2019). Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landscape and Urban Planning, 190, 103586. doi:https://doi.org/10.1016/j.landurbplan.2019.05.017
Lau, K. K.-L., Chung, S. C., & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, 154, 227-238. doi:https://doi.org/10.1016/j.buildenv.2019.03.005
Makaremi, N., Salleh, E., Jaafar, M. Z., & GhaffarianHoseini, A. (2012). Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment, 48, 7-14. doi:https://doi.org/10.1016/j.buildenv.2011.07.024
Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of Biometeorology, 43(2), 76-84. doi:https://doi.org/10.1007/s004840050119
McPherson, E. G. (2001). Sacramento’s parking lot shading ordinance: environmental and economic costs of compliance. Landscape and Urban Planning, 57(2), 105-123. doi:https://doi.org/10.1016/S0169-2046(01)00196-7
Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28. doi:https://doi.org/10.1016/j.landurbplan.2013.11.004
Mills, G. (1999). Urban climatology and urban design. Paper presented at the 15th International Congress of Biometeorology and International Conference on Urban Climatology.
Milošević, T., Milošević, N., & Glišić, I. (2013). Tree growth, yield, fruit quality attributes and leaf nutrient content of ‘Roxana’apricot as influenced by natural zeolite, organic and inorganic fertilisers. Scientia Horticulturae, 156, 131-139.
Morakinyo, T. E., Dahanayake, K. K. C., Adegun, O. B., & Balogun, A. A. (2016). Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 130, 721-732. doi:https://doi.org/10.1016/j.enbuild.2016.08.087
Morakinyo, T. E., Kong, L., Lau, K. K.-L., Yuan, C., & Ng, E. (2017). A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 115, 1-17.
Population Reference, B. Retrieved from https://www.prb.org/
Rahman, M., Armson, D., & Ennos, A. (2015). A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosystems, 18(2), 371-389. doi:https://doi.org/10.1007/s11252-014-0407-7
Shahidan, M. F., Shariff, M. K., Jones, P., Salleh, E., & Abdullah, A. M. (2010). A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landscape and Urban Planning, 97(3), 168-181. doi:https://doi.org/10.1016/j.landurbplan.2010.05.008
Shashua‐Bar, L., Potchter, O., Bitan, A., Boltansky, D., & Yaakov, Y. (2010). Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(1), 44-57.
Skelhorn, C., Lindley, S., & Levermore, G. (2014). The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129-140. doi:https://doi.org/10.1016/j.landurbplan.2013.09.012
Spangenberg, J., Shinzato, P., Johansson, E., & Duarte, D. (2008). Simulation of the influence of vegetation on microclimate and thermal comfort in the city of São Paulo. Revista da Sociedade Brasileira de Arborização Urbana, 3(2), 1-19. doi:http://dx.doi.org/10.5380/revsbau.v3i2.66265
Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 66, 158-172. doi:https://doi.org/10.1016/j.buildenv.2013.04.012
Streiling, S., & Matzarakis, A. (2003). Influence of single and small clusters of trees on the bioclimate of a city: a case study. Journal of Arboriculture, 29(6), 309-316.
Taleghani, M., Sailor, D., & Ban-Weiss, G. A. (2016). Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environmental Research Letters, 11(2), 024003. doi:https://doi.org/10.1088/1748-9326/11/2/024003
Teshnehdel, S., Akbari, H., Di Giuseppe, E., & Brown, R. D. (2020). Effect of tree cover and tree species on microclimate and pedestrian comfort in a residential district in Iran. Building and Environment, 106899. doi:https://doi.org/10.1016/j.buildenv.2020.106899
Teshnehdel, S., Bahari, M., & Mirnezami, S. (2019). Traditional Courtyards as a Microclimate in the Improvement of Human Thermal Comfort Condition. Landscape Architecture and Regional Planning, 4(3), 53. doi:https://doi.org/10.11648/j.larp.20190403.12
Teshnehdel, S., Gatto, E., Li, D., & Brown, R. D. (2022). Improving outdoor thermal comfort in a steppe climate: Effect of water and trees in an urban park. Land, 11(3), 431.
Teshnehdel, S., Mirnezami, S., Saber, A., Pourzangbar, A., & Olabi, A. G. (2020). Data-driven and numerical approaches to predict thermal comfort in traditional courtyards. Sustainable Energy Technologies and Assessments, 37, 100569. doi:https://doi.org/10.1016/j.seta.2019.100569
Teshnehdel, S., Soflaei, F., & Shokouhian, M. (2020). Assessment of solar shading performance of courtyard houses in desert climate of Kashan, Iran. Architectural Engineering and Design Management, 1-20. doi:https://doi.org/10.1080/17452007.2020.1758025
Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55-76. doi:https://doi.org/10.1016/j.scs.2018.08.009
Yahia, M. W., & Johansson, E. (2014). Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning, 125, 1-16. doi:https://doi.org/10.1016/j.landurbplan.2014.01.014
Yang, B., Olofsson, T., Nair, G., & Kabanshi, A. (2017). Outdoor thermal comfort under subarctic climate of north Sweden–A pilot study in Umeå. Sustainable Cities and Society, 28, 387-397. doi:https://doi.org/10.1016/j.scs.2016.10.011
Yang, W., Wong, N. H., & Jusuf, S. K. (2013). Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, 59, 426-435. doi:https://doi.org/10.1016/j.buildenv.2012.09.008
Zhang, L., Zhan, Q., & Lan, Y. (2018). Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130, 27-39. doi:https://doi.org/10.1016/j.buildenv.2017.12.014