Constitutive heterologous expression of rty increases the ABA and IAA contents
In A. thaliana, rty is a critical regulator of endogenous auxin concentration, with consequences for normal growth and development [6-8]. The RTY gene is located at 8.89 cM between marker SM114 (8.79 cM) and SGCSNP71 (8.94 cM) on chromosome 2 (Fig. 1a). To determine the regulatory effect of rty on adventitious root development in strawberry, rty was introduced into strawberry via Agrobacterium tumefaciens (Fig. 1b). Putatively transformed shoots were identified by screening the culture (Fig. 1c). Seven transgenic lines were confirmed by PCR and western blot analysis (Fig. 1e, f, and Fig. S2, S3). The transgenic strawberry plants exhibited strong growth, including broad leaves (Fig. 1d), an increased number of roots (Fig. 2b,c), and leaf trichomes (Fig. 5b, d), but showed reduced tiller number (Fig. 1d, 1g) compared to the control plants.
The rty gene encodes either a transaminase or a C-S lyase involved in IAA biosynthesis [7-9]. rty appears to be critical for regulating IAA concentrations [6, 7, 9]. Thus, we expected the heterologous expression of rty in strawberry to result in IAA accumulation. Therefore, we assayed the endogenous IAA contents on days 0 and 4 in control and rty transgenic plants cultured on MS medium with no exogenous growth regulators. The concentrations of IAA in the control plants were 46.5 ng g–1 on day 0 and 72.7 ng g–1 on day 4, but in transgenic plants were 66.0 and 155.3 ng g–1 respectively. Additionally, the IAA concentrations in the transgenic plants significantly increased between the two analyzed time-points, whereas the IAA concentration in the control plants only slightly increased (Fig. 1h). Thus, quantification of IAA concentrations revealed that heterologous expression of rty significantly enhanced the accumulation of IAA in the transgenic plants on days 0 and 4.
To clarify whether rty increased ABA levels due to crosstalk between the auxin and ABA biosynthesis and metabolism pathways [9], we next tested the endogenous ABA concentrations. The concentrations of ABA in the control plants were 236.3 ng g–1 on day 0 and 421.7 ng g–1 on day 4, but in transgenic plants were 543.8 and 963.4 ng g–1, respectively. The ABA levels exhibited a similar trend as IAA, with endogenous ABA concentrations being significantly higher in the transgenic plants than in the control plants (Fig. 1i). These data indicate that the heterologous expression of rty in the transgenic strawberry plants stimulated the accumulation of large amounts of IAA and ABA.
High endogenous auxin contents lead to early root development
Endogenous IAA regulates auxin-dependent developmental processes in plants, including adventitious root formation [6-8]. To assess the effects of the increased IAA concentration in the transgenic strawberry plants on root development, we examined the histology of the roots of control and transgenic plants on MS medium with no exogenous growth regulators. The roots exhibited a developmental pattern common among woody perennials. The meristematic tissues, including the exodermis, cortex, and stele, remained undifferentiated on the first day. There were no differences on day 0. Differences in root development between the control and transgenic plants were apparent on day 4. Specifically, in the transgenic plants at this stage, the arched nature of the xylem poles was lost, the periderm formed from the outer layers of the pericycle, and the outer cell layers containing the exodermis, cortex, and endodermis began to break down and rupture, but these phenomena were only observed on day 5 in control plants.
In the control plants on day 4, the primary xylem, primary phloem, and endodermis began to differentiate, and the vascular cambium formed and gave rise to secondary xylem and phloem tissues. Whereas the roots of the transgenic plants were intact on day 5, in control plants, the periderm had formed and the exodermis, cortex, and endodermis had ruptured by this time point (Fig. 2a). On day 9, most transgenic plants had 3–5 roots, whereas the control plants had 1–3 roots (Fig. 2b, c). These results suggest that the high IAA concentrations of the transgenic plants induced early root development and increased the number of roots.
Heterologous expression of rty confers drought tolerance to strawberry
ABA accumulation in plants is expected to induce many drought-resistance mechanisms [21, 30,31]. To clarify how the increased accumulation of ABA in the transgenic plants enhanced drought tolerance, we compared the effects of a drought treatment on the control and transgenic plants. Specifically, we grew the control and transgenic plants for 2 months in pots and then induced drought conditions by withholding water for 2 weeks. The plants were then rewatered and their growth was monitored for 1 week. The 14-day drought treatment resulted in curled and severely wilted leaves in the control plants, with many leaves withering and falling off the plants. By contrast, the leaves of the transgenic plants were less affected by the exposure to drought stress, with only a few leaves were curled, wilted, or withered (Fig. 3a). Additionally, 80% of the transgenic plants and 2% of the control plants survived the 14-day drought treatment (Fig. 3b). These results suggest that the enhanced drought tolerance of the transgenic plants was likely mediated by an ABA-dependent pathway.
Simultaneously, we measured the soil relative water content during drought stress. Whereas the relative soil water content was 100% in the control and transgenic plants on 0 d (i.e., the day of saturation with water), it was decreased from 19% on day 6 to 5.3% on day 14 in control, but decreased from 20% on day 6 to 6.6% on day14 in transgenic plants (Fig. S4). These data showed that the soil of transgenic plants was wetter by reducing transpiration.
To further characterize the drought tolerance of the transgenic plants, 30-day- old control and transgenic plants on subculture medium were treated with various PEG concentrations (0%, 10%, 20%, and 30%) to simulate drought conditions. After 2 days of treatment with 0% PEG, the transgenic plants displayed no obvious differences from the untransformed control plants. However, after two days of treatment, leaves of the control plants began to roll and wilt in response to the 10% PEG treatment, with the rolling and wilting increasing in severity as the concentration of PEG increased to 30%. These symptoms were most severe for the 30% PEG treatment. By contrast, the leaves of the transgenic plants only began to roll and wilt in response to the 20% PEG treatment. The transgenic plants displayed less rolling and wilting than the control plants, even under 30% PEG conditions (Fig. 3c).
The ability of the control and transgenic plants treated with PEG to scavenge reactive oxygen species (ROS) was assessed by examining the activities of two key antioxidant enzymes (POD and CAT), which are known ROS scavengers. CAT activity was considerably higher in the transgenic plants than in the control plants. Additionally, the PEG treatment significantly enhanced the POD activity of the transgenic plants, ultimately resulting in significantly higher POD activity in the transgenic than control plants (Fig. 3d, e).
To explore the molecular mechanisms underlying the increased drought tolerance of the transgenic plants heterologously expressing rty, we analyzed the expression of stress-responsive genes during the PEG treatment using an RT-qPCR analysis. Specifically, we analyzed the expression of the following drought-responsive genes, involved in ABA biosynthesis, catabolism, transport, and signaling: NCED3 (nine cis-epoxycarotenoid dioxygenase 3) [32], ABI1 (ABA insensitive 1) [33], RD29A (responsive to dehydration 29) [34], DREB2A (dehydration responsive element-binding protein 2A) [35], and PP2C (type-2C protein phosphatase) [36]. The expression of RD29A (a stress-responsive marker), and DREB2A (a regulator of many water stress-inducible genes) during PEG treatment was upregulated to a greater extent in the transgenic plants than in the control plants (Fig. S5). The stress-responsive genes were likewise more responsive to drought stress in the transgenic plants than in the control plants, suggesting that stress signals are somehow amplified in rty, triggering a stronger drought response (Fig. S5). These results suggest that heterologous expression of rty in strawberry may decrease ROS accumulation by enhancing antioxidant enzyme activities.
The water loss rate is lower in the transgenic plants than in the wild-type plants
To investigate the effects of heterologous expression of rty on the physiological status of strawberry plants, we analyzed the water loss rate, water use efficiency, and electrolyte leakage of the transgenic and control plants. The water loss rate of leaves of one-month-old plants at same position excised from three transgenic plants was lower than that of leaves from the control plants (Fig. 4a). The water use efficiency of leaves from two-month-old transgenic plants grown in pots in the greenhouse was higher than that of the control plants (Fig. 4b). Moreover, the electrolyte leakage from fresh leaves was lower in transgenic plants than in the control plants (Fig. 4c), likely due to the transgenic plants having less cell membrane damage. The differences in the water loss rate, electrolyte leakage, and water use efficiency between the control and transgenic plants may contribute to the improved drought tolerance of the transgenic plants heterologously expressing rty.
Transgenic plants heterologously expressing rty have increased ABA-induced stomatal closure
Previous research indicates that ABA is an important inducer of stomatal closure, preventing water loss and thereby contributing to drought tolerance [18, 37]. We thus compared the stomatal aperture sizes of transgenic and control plants following ABA treatment. Scanning electron microscopy revealed that the percentage of closed stomata was almost two-fold higher in the transgenic plants than in the control plants (Fig. 5a, c). There were no significant differences in the average number of stomata between the control and transgenic plants. Thus, the observed reduced water loss rate and increased water use efficiency of the transgenic plants compared to the control plants were likely not due to differences in the number of stomata but to variability in stomatal closure (Fig. 5c).
To assess whether ABA induced stomatal closure differently in the transgenic plants, we compared the effects of exogenous ABA addition with that of mock. The average width of transgenic plant stomatal apertures was significantly smaller than that of the control plants for untreated (CK), mock-treated, or 20-μM ABA-treated plants. However, the width of stomatal apertures was more severely reduced for plants subjected to the 20-μM ABA treatment (Fig. 5e and Fig. S6). Thus, the transgenic plants heterologously expressing rty exhibited increased ABA-induced stomatal closure.
Trichomes affect the optical properties of the leaf surface and may protect plants from stress damage and reduced water loss through decreasing the rate of transpiration [38-40]. In the current study, we revealed that the density and number of epidermal trichomes on the abaxial side of leaves were higher in the transgenic plants than in the control plants. The abaxial surface per unit area of transgenic and control leaves were an average of 50 and 30 epidermal trichomes per unit area, respectively (Fig. 5b, d). The greater abundance of epidermal trichomes on the transgenic leaves may have aided in the increase in drought tolerance through reducing water loss and decreasing the rate of transpiration. These results suggest that the increase in drought tolerance is due to an increased number of epidermal trichomes and increased endogenous ABA concentrations, leading to smaller stomates.
Expression of auxin biosynthetic and signaling genes is upregulated in transgenic plants
To determine the molecular mechanisms underlying the phenotypic differences between the control and transgenic plants, we compared the IAA contents of the control and transgenic plants during drought treatment. The concentrations of IAA in the control plants were 31.8 ng g–1 on day 0, 36.5 ng g–1 on day 4, and 36.7 ng g–1 on day 8, but in transgenic plants were 43.0, 46.2, and 40.1 ng g–1, respectively. The IAA content was always higher in the transgenic plants than in the control plants during drought treatment (Fig. 6). However, these results indicated that the IAA content in the transgenic and control plants did not increase during drought treatment.
To clarify the mechanism underlying the IAA content difference between the control and transgenic plants, we examined the expression levels of IAA biosynthetic and signaling genes, including PIN1, AAO1, ARF7, MIX2, YUC1, YUC3, and GA3ox. RT-qPCR analysis indicated that drought treatment upregulated the expression of the IAA biosynthetic and signaling genes in the transgenic plants.
These results suggest that the heterologous expression of rty in transgenic plants induced the expression of IAA biosynthetic and signaling genes, which in turn increased IAA accumulation. Furthermore, the increased ABA levels during drought treatment (Fig. 6) likely influence the observed production of additional roots (Fig. 2b, c) and trichomes (Fig. 5b, d) in the transgenic plants.
Expression of stress-inducible genes and ABA biosynthetic genes is upregulated in the transgenic plants
Under drought conditions, ABA concentrations increase to a specific threshold by midday, inducing ion efflux and inhibiting sugar uptake by guard cells, after which the stomatal apertures decrease in size for the rest of the day [41]. To elucidate the role of ABA during stress responses, we compared the ABA contents of the two-month-old control and transgenic plants following a drought treatment. The concentrations of ABA in the control were 334.0 ng g–1 on day 0, 1017.2 ng g–1 on day 4, and 2635.3 ng g–1 on day 8, but in transgenic plants were 939.3, 1083.7, and 3471.3 ng g–1, respectively. The ABA concentration was significantly higher at 8 days after initiating the drought treatment in both the control and transgenic plants, but was 1.3-fold higher in the transgenic plants (Fig. 7).
To determine the molecular mechanisms underlying this difference in ABA contents between the control and transgenic plants, we examined the expression of genes involved in ABA biosynthesis, catabolism, transport, and signaling, as well as drought-responsive genes, including the following: NCED3 [32], ABI1 [33], RD29A [34], DREB2A [35], and PP2C [36]. Water deficit stress promotes ABA biosynthesis via the upregulated expression of NCED3 [42]. RT-qPCR analysis indicated that the NCED3 transcript levels were significantly higher at 8 days after starting the drought treatment, with the increase being more pronounced in transgenic plants, implying that this gene was actively expressed. Additionally, the expression levels of the ABA-inducible marker genes (RD29A and DREB2A), ABA biosynthetic genes (ABI1, ABA8, and PYL9), a stomatal closure-responsive gene (PP2C), and MYB44 were higher in the transgenic plants than in the control plants during the drought treatment (Fig. 7). High PP2C and MYB44 transcript levels may induce stomatal closure [36].
Thus, the heterologous expression of rty in strawberry plants considerably increased ABA accumulation. The expression of stress-inducible genes and ABA biosynthetic genes may then trigger stomatal closure via an ABA-dependent pathway, which may contribute to the observed drought tolerance of the transgenic plants.