Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)80360-2.
Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., et al. (2003). A uniform system for microRNA annotation. RNA 9, 277–279. doi:10.1261/rna.2183803.
Argueso, C. T., Ferreira, F. J., Epple, P., To, J. P. C., Hutchison, C. E., Schaller, G. E., et al. (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 8. doi:10.1371/journal.pgen.1002448.
Baluska, F., Gagliano, M., and Witzany, G. (2018). Memory and Learning in Plants. doi:10.1007/978- 3-319-75596-0.
Bao, W., Kojima, K. K., and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11. doi:10.1186/s13100-015-0041-9.
Beguiristain, T., Grandbastien, M. A., Puigdomènech, P., and Casacuberta, J. M. (2001). Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol. 127, 212–221. doi:10.1104/pp.127.1.212.
Bergman, C. M., and Quesneville, H. (2007). Discovering and detecting transposable elements in genome sequences. Brief. Bioinform. 8, 382–392. doi:10.1093/bib/bbm048.
Betley, J. N., Frith, M. C., Graber, J. H., Choo, S., and Deshler, J. O. (2002). A ubiquitous and conserved signal for RNA localization in chordates. Curr. Biol. 12, 1756–61. doi:10.1016/s0960- 9822(02)01220-4.
Brierley, C., and Flavell, A. J. (1990). The retrotransposon Copia controls the relative levels of its gene products post-transcriptionally be differential expression from its two major mRNAs. Nucleic Acids Res. 18, 2947–2951. doi:10.1093/nar/18.10.2947.
Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H., and Neale, D. B. (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc. Natl. Acad. Sci. 101, 15255–15260. doi:10.1073/pnas.0404231101.
Bureau, T. E., and Wessler, S. R. (1994). Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6, 907–916. doi:10.1105/tpc.6.6.907.
Butelli, E., Licciardello, C., Zhang, Y., Liu, J., Mackay, S., Bailey, P., et al. (2012). Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges. Plant Cell 24, 1242–1255. doi:10.1105/tpc.111.095232.
Camiolo, S., Rau, D., and Porceddu, A. (2009). Mutational biases and selective forces shaping the structure of Arabidopsis genes. PLoS One 4. doi:10.1371/journal.pone.0006356.
Candar-Cakir, B., Arican, E., and Zhang, B. (2016). Small RNA and degradome deep sequencing
reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnol. J. 14, 1727–1746. doi:10.1111/pbi.12533.
Capy, P., Gasperi, G., Biémont, C., and Bazin, C. (2000). Stress and transposable elements: Co- evolution or useful parasites? Heredity (Edinb). 85, 101–106. doi:10.1046/j.1365- 2540.2000.00751.x.
Casa, A. M., Brouwer, C., Nagel, A., Wang, L., Zhang, Q., Kresovich, S., et al. (2000). The MITE family Heartbreaker (Hbr): Molecular markers in maize. Proc. Natl. Acad. Sci. 97, 10083–10089. doi:10.1073/pnas.97.18.10083.
Casacuberta, J. M., and Grandbastien, M. angèle (1993). Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res. 21, 2087–2093. doi:10.1093/nar/21.9.2087.
Casacuberta, J. M., and Santiago, N. (2003). Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plant genes and genomes. Gene 311, 1–11. doi:10.1016/S0378-1119(03)00557-2.
Chhatre, V. E., Byram, T. D., Neale, D. B., Wegrzyn, J. L., and Krutovsky, K. V. (2013). Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genet. Genomes 9, 1161–1178. doi:10.1007/s11295- 013-0624-x.
Chu, C.-G., Tan, C. T., Yu, G.-T., Zhong, S., Xu, S. S., and Yan, L. (2011). A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3 (Bethesda). 1, 637–45. doi:10.1534/g3.111.001131.
Claros, M. G., Bautista, R., Guerrero-Fernández, D., Benzerki, H., Seoane, P., and Fernández-Pozo,
- (2012). Why assembling plant genome sequences is so challenging. Biology (Basel). 1, 439– 59. doi:10.3390/biology1020439.
Colinas, J., Schmidler, S. C., Bohrer, G., Iordanov, B., and Benfey, P. N. (2008). Intergenic and genic sequence lengths have opposite relationships with respect to gene expression. PLoS One 3. doi:10.1371/journal.pone.0003670.
Crepeau, M. W., Langley, C. H., and Stevens, K. A. (2017). From Pine Cones to Read Clouds: Rescaffolding the Megagenome of Sugar Pine ( Pinus lambertiana ). G3: Genes|Genomes|Genetics 7, 1563–1568. doi:10.1534/g3.117.040055.
Cumbie, W. P., Eckert, A., Wegrzyn, J., Whetten, R., Neale, D., and Goldfarb, B. (2011). Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity (Edinb). 107, 105–114. doi:10.1038/hdy.2010.168.
Das, S., and Bansal, M. (2019). Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 14. doi:10.1371/journal.pone.0212678.
Eckert, A. J., van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-Ibarra, J., González-Martínez,
- C., et al. (2010). Patterns of Population Structure and Environmental Associations to Aridity
Across the Range of Loblolly Pine ( Pinus taeda L., Pinaceae). Genetics 185, 969–982. doi:10.1534/genetics.110.115543.
Eriksson, G. (2008). Pinus sylvestris recent genetic research. Uppsala: Swedish University of Agricultural Science.
Eulgem, T., and Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling.
Curr. Opin. Plant Biol. 10, 366–371. doi:10.1016/j.pbi.2007.04.020.
Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet.
9, 397–405. doi:10.1038/nrg2337.
Feschotte, C., Jiang, N., and Wessler, S. R. (2002). Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 3, 329–341. doi:10.1038/nrg793.
Flavell, A. J., Knox, M. R., Pearce, S. R., and Ellis, T. H. N. (1998). Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650. doi:10.1046/j.1365-313X.1998.00334.x.
Fray, R. G., and Grierson, D. (1993). Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22, 589–602. doi:10.1007/BF00047400.
Friesen, N., Brandes, A., and Heslop-Harrison, J. S. (2001). Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol. Biol. Evol. 18, 1176–1188. doi:10.1093/oxfordjournals.molbev.a003905.
Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152. doi:10.1093/bioinformatics/bts565.
Galindo-González, L., Mhiri, C., Deyholos, M. K., and Grandbastien, M. A. (2017). LTR- retrotransposons in plants: Engines of evolution. Gene 626, 14–25. doi:10.1016/j.gene.2017.04.051.
Gao, D., Jimenez-Lopez, J. C., Iwata, A., Gill, N., and Jackson, S. A. (2012). Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants. PLoS One 7, 1–12. doi:10.1371/journal.pone.0048595.
Garcia-Martinez, J., and Martínez-Izquierdo, J. A. (2003). Study on the Evolution of the Grande Retrotransposon in the Zea Genus. Mol. Biol. Evol. 20, 831–841. doi:10.1093/molbev/msg095.
Gelfman, S., and Ast, G. (2013). When epigenetics meets alternative splicing: the roles of DNA methylation and GC architecture. Epigenomics 5, 351–353. doi:10.2217/epi.13.32.
Goenawan, I. H., Bryan, K., and Lynn, D. J. (2016). DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32, 2713–2715. doi:10.1093/bioinformatics/btw187.
Gonzalez-Ibeas, D., Martinez-Garcia, P. J., Famula, R. A., Delfino-Mix, A., Stevens, K. A., Loopstra,
- A., et al. (2016). Assessing the Gene Content of the Megagenome: Sugar Pine ( Pinus
lambertiana ). G3: Genes|Genomes|Genetics 6, 3787–3802. doi:10.1534/g3.116.032805.
Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: Ten years of next- generation sequencing technologies. Nat. Rev. Genet. 17, 333–351. doi:10.1038/nrg.2016.49.
Grandbastien, M. A. (2015). LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim. Biophys. Acta - Gene Regul. Mech. 1849, 403–416. doi:10.1016/j.bbagrm.2014.07.017.
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., and Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Res. 36. doi:10.1093/nar/gkn188.
Guan, R., Zhao, Y., Zhang, H., Fan, G., Liu, X., Zhou, W., et al. (2016). Draft genome of the living fossil Ginkgo biloba. Gigascience 5, 49. doi:10.1186/s13742-016-0154-1.
Hadjiargyrou, M., and Delihas, N. (2013). The intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci. 14, 13307–28. doi:10.3390/ijms140713307.
Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–300. doi:10.1093/nar/27.1.297.
Huntley, R. P., Binns, D., Dimmer, E., Barrell, D., O’Donovan, C., and Apweiler, R. (2009). QuickGO: A user tutorial for the web-based Gene Ontology browser. Database 2009, 1–19. doi:10.1093/database/bap010.
Hwang, I., Sheen, J., and Müller, B. (2012). Cytokinin Signaling Networks. Annu. Rev. Plant Biol. 63, 353–380. doi:10.1146/annurev-arplant-042811-105503.
Jurka, J., Bao, W., and Kojima, K. K. (2011). Families of transposable elements, population structure and the origin of species. Biol. Direct 6, 44. doi:10.1186/1745-6150-6-44.
Kalendar, R., Amenov, A., and Daniyarov, A. (2019). Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Funct. Plant Biol. 46, 15–29. doi:10.1071/FP18098.
Kalendar, R., Flavell, A. J., Ellis, T. H. N., Sjakste, T., Moisy, C., and Schulman, A. H. (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb). 106, 520–530. doi:10.1038/hdy.2010.93.
Kalendar, R., and Schulman, A. H. (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat. Protoc. 1, 2478–2484. doi:10.1038/nprot.2006.377.
Kalendar, R., Tanskanen, J., Chang, W., Antonius, K., Sela, H., Peleg, O., et al. (2008). Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. U. S. A. 105, 5833–5838. doi:10.1073/pnas.0709698105.
Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., and Schulman, A. H. (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. 97, 6603–6607. doi:10.1073/pnas.110587497.
Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., and Schulman, A. H. (2004). Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes. Genetics 166, 1437–1450. doi:10.1534/genetics.166.3.1437.
Kashkush, K., Feldman, M., and Levy, A. A. (2003). Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33, 102–106. doi:10.1038/ng1063.
Kazazian, H. H. (2004). Mobile Elements: Drivers of Genome Evolution. Science (80-. ). 303, 1626– 1632. doi:10.1126/science.1089670.
Kentner, E. K., Arnold, M. L., and Wessler, S. R. (2003). Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana iris species and their use as molecular markers. Genetics 164, 685–697.
Kobayashi, S., Goto-Yamamoto, N., and Hirochika, H. (2004). Retrotransposon-Induced Mutations in Grape Skin Color. Science (80-. ). 304, 982. doi:10.1126/science.1095011.
Korf, I., Neale, D., Kovach, A., Wegrzyn, J., Parra, G., Holt, C., et al. (2010). The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11, 420. doi:10.1186/1471-2164-11-420.
Kossack, D. S., and Kinlaw, C. S. (1999). IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol. Biol. 39, 417–426. doi:10.1023/A:1006115732620.
Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162. doi:10.1093/nar/gky1141.
Krom, N., Recla, J., and Ramakrishna, W. (2008). Analysis of genes associated with retrotransposons in the rice genome. Genetica 134, 297–310. doi:10.1007/s10709-007-9237-3.
Kumar, A., and Bennetzen, J. L. (1999). Plant Retrotransposons. Annu. Rev. Genet. 33, 479–532. doi:10.1146/annurev.genet.33.1.479.
Lai, Y., Cuzick, A., Lu, X. M., Wang, J., Katiyar, N., Tsuchiya, T., et al. (2019). The Arabidopsis RRM domain protein EDM 3 mediates race‐specific disease resistance by controlling H3K9me2‐ dependent alternative polyadenylation of RPP 7 immune receptor transcripts. Plant J. 97, 646– 660. doi:10.1111/tpj.14148.
Le, T. N., Miyazaki, Y., Takuno, S., and Saze, H. (2015). Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res. 43, 3911–3921. doi:10.1093/nar/gkv258.
Lee, H., Zhang, Z., and Krause, H. M. (2019). Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet. 35, 892–902. doi:10.1016/j.tig.2019.09.006.
Lehti-Shiu, M. D., and Shiu, S.-H. (2012). Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 2619–39. doi:10.1098/rstb.2012.0003.
Lehti-Shiu, M. D., Zou, C., Hanada, K., and Shiu, S.-H. (2009). Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150, 12–26. doi:10.1104/pp.108.134353.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. doi:10.1093/bioinformatics/btp352.
Li, S. F., Su, T., Cheng, G. Q., Wang, B. X., Li, X., Deng, C. L., et al. (2017a). Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes (Basel). 8. doi:10.3390/genes8100290.
Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., et al. (2017b). Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics 18, 55. doi:10.1186/s12864-016-3454-z.
Liu, B., Shan, X. H., Liu, Z. L., Dong, Z. Y., Wang, Y. M., Chen, Y., et al. (2005). Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol. Biol. Evol. 22, 976–990.
Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., and Ouyang, B. (2017). Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 18, 1–18. doi:10.1186/s12864-017-3869-1.
Liu, Y., Yin, J., Xiao, M., Mason, A. S., Gao, C., Liu, H., et al. (2013). Characterization of Structure, Divergence and Regulation Patterns of Plant Promoters. J. Mol. Biol. Res. 3, 23–36. doi:10.5539/jmbr.v3n1p23.
Lu, C., Chen, J., Zhang, Y., Hu, Q., Su, W., and Kuang, H. (2012). Miniature Inverted-Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa. Mol. Biol. Evol. 29, 1005–1017. doi:10.1093/molbev/msr282.
Lu, M., Krutovsky, K. V., Nelson, C. D., Koralewski, T. E., Byram, T. D., and Loopstra, C. A. (2016). Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics 17, 730. doi:10.1186/s12864-016-3081-8.
Ma, B., Xin, Y., Kuang, L., and He, N. (2019). Distribution and Characteristics of Transposable Elements in the Mulberry Genome. Plant Genome 12, 0. doi:10.3835/plantgenome2018.12.0094.
Macas, J., and Neumann, P. (2007). Ogre elements — A distinct group of plant Ty3/gypsy-like retrotransposons. Gene 390, 108–116. doi:10.1016/j.gene.2006.08.007.
Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21, 3448–3449. doi:10.1093/bioinformatics/bti551.
MAIER, F., Zwicker, S., Hückelhoven, A., Meissner, M., FUNK, J., Pfitzner, A. J. P. P., et al. (2011). Nonexpressor Of Pathogenesis-Related Proteins1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol. Plant Pathol. 12, 73–91. doi:10.1111/j.1364-3703.2010.00653.x.
Makarevitch, I., Waters, A. J., West, P. T., Stitzer, M., Hirsch, C. N., Ross-Ibarra, J., et al. (2015). Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress. PLoS Genet. 11. doi:10.1371/journal.pgen.1004915.
McClintock, B. (1984). The significance of responses of the genome to challenge. Science (80-. ). 226, 792–801. doi:10.1126/science.15739260.
Mita, P., and Boeke, J. D. (2016). How retrotransposons shape genome regulation. Curr. Opin. Genet.
Dev. 37, 90–100. doi:10.1016/j.gde.2016.01.001.
Mizuno, M., and Kanehisa, M. (1994). Distribution profiles of GC content around the translation initiation site in different species. FEBS Lett. 352, 7–10. doi:10.1016/0014-5793(94)00898-1.
Mok, M. C. (1994). “Cytokinin and Plant Development—An Overview.,” in CytokininsChemistry, Activity, and Function, ed. M. C. Mok, David W. S.; Mok (Ann Arbor, Michigan: CRC Press), 155–166. Available at: https://books.google.lv/books?hl=lv&lr=&id=yov7iUL7OTAC&oi=fnd&pg=PA155&dq=Cytok inin+and+Plant+Development— An+Overview.+Mok+1994&ots=0dGZoSIvBj&sig=_qiXSJaSqmGC0e-KG- ECigKxfig&redir_esc=y#v=onepage&q=Cytokinin and Plant Development—An Overview. Mok 1994&f [Accessed June 10, 2020].
Mok, M. C., Martin, R. C., and Mok, D. W. S. (2000). Cytokinins: Biosynthesis, metabolism and perception. Vitr. Cell. Dev. Biol. - Plant 36, 102–107. doi:10.1007/s11627-000-0021-7.
Monden, Y., and Tahara, M. (2015). Plant Transposable Elements and Their Application to Genetic Analysis via High-throughput Sequencing Platform. Hortic. J. 84, 283–294. doi:10.2503/hortj.MI-IR02.
Morse, A. M., Peterson, D. G., Islam-Faridi, M. N., Smith, K. E., Magbanua, Z., Garcia, S. A., et al. (2009). Evolution of genome size and complexity in Pinus. PLoS One 4, 1–11. doi:10.1371/journal.pone.0004332.
Muotri, A. R., Chu, V. T., Marchetto, M. C. N., Deng, W., Moran, J. V., and Gage, F. H. (2005). Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910. doi:10.1038/nature03663.
Neale, D. B., and Ingvarsson, P. K. (2008). Population, quantitative and comparative genomics of adaptation in forest trees. Curr. Opin. Plant Biol. 11, 149–155. doi:10.1016/j.pbi.2007.12.004.
Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15. doi:10.1186/gb-2014-15-3-r59.
Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson, A. K., et al. (2012). BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920. doi:10.1093/bioinformatics/bts277.
Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579. Available at:
https://doi.org/10.1038/nature12211.
Parida, S. K., Dalal, V., Singh, A. K., Singh, N. K., and Mohapatra, T. (2009). Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10, 140. doi:10.1186/1471-2164-10-140.
Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28, 2537–9. doi:10.1093/bioinformatics/bts460.
Pellicer, J., Hidalgo, O., Dodsworth, S., and Leitch, I. J. (2018). Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes (Basel). 9. doi:10.3390/GENES9020088.
Perera, D., Magbanua, Z. V., Thummasuwan, S., Mukherjee, D., Arick, M., Chouvarine, P., et al. (2018). Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis. Gene 663, 165–177. doi:10.1016/J.GENE.2018.04.024.
Prunier, J., Verta, J.-P., and MacKay, J. J. (2016). Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytol. 209, 44–62. doi:10.1111/nph.13565.
Purugganan, M. D., and Wessler, S. R. (1995). Transposon signatures: species‐specific molecular markers that utilize a class of multiple‐copy nuclear DNA. Mol. Ecol. 4, 265–270. doi:10.1111/j.1365-294X.1995.tb00218.x.
Qin, S., Jin, P., Zhou, X., Chen, L., and Ma, F. (2015). The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human. PLoS One 10, e0131365. doi:10.1371/journal.pone.0131365.
Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. doi:10.1093/bioinformatics/btq033.
Rebollo, R., Romanish, M. T., and Mager, D. L. (2012). Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annu. Rev. Genet. 46, 21–42. doi:10.1146/annurev-genet-110711-155621.
Ren, X. Y., Vorst, O., Fiers, M. W. E. J., Stiekema, W. J., and Nap, J. P. (2006). In plants, highly expressed genes are the least compact. Trends Genet. 22, 528–532. doi:10.1016/j.tig.2006.08.008.
Rho, M., Choi, J.-H. H., Kim, S., Lynch, M., and Tang, H. (2007). De novo identification of LTR retrotransposons in eukaryotic genomes. BMC Genomics 8, 1–16. doi:10.1186/1471-2164-8-90.
Roger, F., Godhe, A., and Gamfeldt, L. (2012). Genetic Diversity and Ecosystem Functioning in the Face of Multiple Stressors. PLoS One 7. doi:10.1371/journal.pone.0045007.
Sabot, F., and Schulman, A. H. (2007). Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics 8, 5–9. doi:10.1186/1471-2164-8-247.
Sabot, F., Sourdille, P., and Bernard, M. (2005). Advent of a new retrotransposon structure: The long form of the Veju elements. Genetica 125, 325–332. doi:10.1007/s10709-005-7926-3.
Sakai, H., Honma, T., Takashi, A., Sato, S., Kato, T., Tabata, S., et al. (2001). ARR1, a transcription factor for genes immediately responsive to cytokinins. Science (80-. ). 294, 1519–1521. doi:10.1126/science.1065201.
SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., et al. (1996). Nested Retrotransposons in the Intergenic Regions of the Maize Genome. Science (80-. ). 274, 765–768. doi:10.1126/science.274.5288.765.
Savolainen, O., Pyhäjärvi, T., and Knürr, T. (2007). Gene Flow and Local Adaptation in Trees. Annu.
Rev. Ecol. Evol. Syst. 38, 595–619. doi:10.1146/annurev.ecolsys.38.091206.095646.
Schulman, A. H. (2013). Retrotransposon replication in plants. Curr. Opin. Virol. 3, 604–614. doi:10.1016/j.coviro.2013.08.009.
Schwartz, S., Meshorer, E., and Ast, G. (2009). Chromatin organization marks exon-intron structure.
Nat. Struct. Mol. Biol. 16, 990–995. doi:10.1038/nsmb.1659.
Serrato-Capuchina, A., and Matute, D. R. (2018). The Role of Transposable Elements in Speciation.
Genes (Basel). 9. doi:10.3390/genes9050254.
Shang, Y., Yang, F., Schulman, A. H., Zhu, J., Jia, Y., Wang, J., et al. (2017). Gene Deletion in Barley Mediated by LTR-retrotransposon BARE. Sci. Rep. 7, 1–9. doi:10.1038/srep43766.
Shirasu, K., Schulman, A. H., Lahaye, T., and Schulze-Lefert, P. (2000). A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915. doi:10.1101/gr.10.7.908.
Singer, T., McConnell, M. J., Marchetto, M. C. N., Coufal, N. G., and Gage, F. H. (2010). LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes? Trends Neurosci. 33, 345– 354. doi:10.1016/j.tins.2010.04.001.
Singh, R., Ming, R., and Yu, Q. (2016). Comparative Analysis of GC Content Variations in Plant Genomes. Trop. Plant Biol. 9, 136–149. doi:10.1007/s12042-016-9165-4.
Singh, S., Nandha, P. S., and Singh, J. (2017). Transposon-based genetic diversity assessment in wild and cultivated barley. Crop J. 5, 296–304. doi:10.1016/J.CJ.2017.01.003.
Slotkin, R. K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285. doi:10.1038/nrg2072.
Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., and Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432. doi:10.1093/bioinformatics/btq675.
Solovyev, V. V., Shahmuradov, I. A., and Salamov, A. A. (2010). “Identification of Promoter Regions and Regulatory Sites,” in Methods in molecular biology (Clifton, N.J.), 57–83. doi:10.1007/978- 1-60761-854-6_5.
Stelmach, K., Macko-Podgórni, A., Machaj, G., and Grzebelus, D. (2017). Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in
the Carrot (Daucus carota L.). Front. Plant Sci. 8, 725. doi:10.3389/fpls.2017.00725.
Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics 204, 1613–1626. doi:10.1534/genetics.116.193227.
Stone, J. M., and Walker, J. C. (1995). Plant protein kinase families and signal transduction. 108.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/7610156 [Accessed December 10, 2019].
Studer, A., Zhao, Q., Ross-Ibarra, J., and Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163. doi:10.1038/ng.942.
Sundaram, V., Cheng, Y., Ma, Z., Li, D., Xing, X., Edge, P., et al. (2014). Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963– 1976. doi:10.1101/gr.168872.113.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi:10.1093/nar/gky1131.
Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A., and Iida, S. (1999). Capture of a genomic HMG domain sequence by the En/Spm -related transposable element Tpn1 in the Japanese morning glory. Mol. Gen. Genet. MGG 261, 447–451. doi:10.1007/s004380050987.
Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H. (1999). A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J. 18, 383–393. doi:10.1046/j.1365- 313X.1999.00460.x.
Taniguchi, M., Sasaki, N., Tsuge, T., Aoyama, T., and Oka, A. (2007). ARR1 Directly Activates Cytokinin Response Genes that Encode Proteins with Diverse Regulatory Functions. Plant Cell Physiol. 48, 263–277. doi:10.1093/pcp/pcl063.
To, T. K., Saze, H., and Kakutani, T. (2015). DNA Methylation within Transcribed Regions. Plant Physiol. 168, 1219–1225. doi:10.1104/PP.15.00543.
Tørresen, O. K., Star, B., Mier, P., Andrade-Navarro, M. A., Bateman, A., Jarnot, P., et al. (2019). Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. doi:10.1093/nar/gkz841.
Treangen, T. J., and Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46. doi:10.1038/nrg3117.
Tsuchiya, T., and Eulgem, T. (2013). An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc. Natl. Acad. Sci. 110, E3535–E3543. doi:10.1073/pnas.1312545110.
Van Bel, M., Proost, S., Wischnitzki, E., Movahedi, S., Scheerlinck, C., Van de Peer, Y., et al. (2012). Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform. Plant Physiol. 158, 590–600. doi:10.1104/pp.111.189514.
Varagona, M. J., Purugganan, M., and Wessler, S. R. (1992). Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4, 811–820. doi:10.1105/tpc.4.7.811.
Venkatesh, and Nandini, B. (2020). Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol. Biol. Rep. 47. doi:10.1007/s11033-020-05365-y.
Vicient, C. M., Kalendar, R., and Schulman, A. H. (2005). Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J. Mol. Evol. 61, 275–291. doi:10.1007/s00239- 004-0168-7.
Voronova, A. (2019). Retrotransposon expression in response to in vitro inoculation with two fungal pathogens of Scots pine (Pinus sylvestris L.). BMC Res. Notes 12, 243. doi:10.1186/s13104-019- 4275-3.
Voronova, A., Belevich, V., Jansons, A., and Rungis, D. (2014). Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet. Genomes 10, 937–951. doi:10.1007/s11295-014-0733-1.
Voronova, A., Belevich, V., Korica, A., and Rungis, D. (2017). Retrotransposon distribution and copy number variation in gymnosperm genomes. Tree Genet. Genomes 13. doi:10.1007/s11295-017- 1165-5.
Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics.
Nat. Rev. Genet. 10, 57–63. doi:10.1038/nrg2484.
Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. T., et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687–694. doi:10.1007/s004380050372.
Wegrzyn, J. L., Liechty, J. D., Stevens, K. A., Wu, L. S., Loopstra, C. A., Vasquez-Gross, H. A., et al. (2014). Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196, 891–909. doi:10.1534/genetics.113.159996.
Wei, F., Stein, J. C., Liang, C., Zhang, J., Fulton, R. S., Baucom, R. S., et al. (2009). Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet. 5, e1000728. doi:10.1371/journal.pgen.1000728.
Wendel, J. F., Greilhuber, J., Doležel, J., and Leitch, I. J. (2012). Plant genome diversity volume 1: Plant genomes, their residents, and their evolutionary dynamics. Plant Genome Divers. Vol. 1 Plant Genomes, their Resid. their Evol. Dyn., 1–279. doi:10.1007/978-3-7091-1130-7.
Wessler, S. R. (1996). Plant retrotransposons: Turned on by stress. Curr. Biol. 6, 959–961. doi:10.1016/S0960-9822(02)00638-3.
Wessler, S. R., Bureau, T. E., and White, S. E. (1995). LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821.
West, P. T., Li, Q., Ji, L., Eichten, S. R., Song, J., Vaughn, M. W., et al. (2014). Genomic Distribution
of H3K9me2 and DNA Methylation in a Maize Genome. PLoS One 9, e105267. doi:10.1371/journal.pone.0105267.
White-Gloria, C., Johnson, J. J., Marritt, K., Kataya, A., Vahab, A., and Moorhead, G. B. (2018). Protein Kinases and Phosphatases of the Plastid and Their Potential Role in Starch Metabolism. Front. Plant Sci. 9, 1032. doi:10.3389/fpls.2018.01032.
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., et al. (2007). A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982. doi:10.1039/b921331g.
Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., and van der Knaap, E. (2008). A Retrotransposon- Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science (80-. ). 319, 1527–1530. doi:10.1126/science.1153040.
Yanagisawa, S. (2004). Dof Domain Proteins: Plant-Specific Transcription Factors Associated with Diverse Phenomena Unique to Plants. Plant Cell Physiol. 45, 386–391. doi:10.1093/pcp/pch055.
Yin, H., Liu, J., Xu, Y., Liu, X., Zhang, S., Ma, J., et al. (2013). TARE1, a Mutated Copia-Like LTR Retrotransposon Followed by Recent Massive Amplification in Tomato. PLoS One 8. doi:10.1371/journal.pone.0068587.
You, F. M., Cloutier, S., Shan, Y., and Ragupathy, R. (2015). LTR Annotator: Automated Identification and Annotation of LTR Retrotransposons in Plant Genomes. Int. J. Biosci. Biochem. Bioinforma. 5, 165–174. doi:10.17706/ijbbb.2015.5.3.165-174.
Zabala, G., and Vodkin, L. O. (2005). The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17, 2619–32. doi:10.1105/tpc.105.033506.
Zhao, H., Zhang, W., Chen, L., Wang, L., Marand, A. P., Wu, Y., et al. (2018a). Proliferation of regulatory DNA elements derived from transposable elements in the maize genome. Plant Physiol. 176, pp.01467.2017. doi:10.1104/pp.17.01467.
Zhao, X., Li, J., Lian, B., Gu, H., Li, Y., and Qi, Y. (2018b). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun. 9, 5056. doi:10.1038/s41467-018-07500-7.
Zhou, H., Liu, Q., Li, J., Jiang, D., Zhou, L., Wu, P., et al. (2012). Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649–60. doi:10.1038/cr.2012.28.
Zimin, A., Stevens, K. A., Crepeau, M. W., Holtz-Morris, A., Koriabine, M., Marcais, G., et al. (2014). Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196, 875–890. doi:10.1534/genetics.113.159715.
Zimin, A. V., Stevens, K. A., Crepeau, M. W., Puiu, D., Wegrzyn, J. L., Yorke, J. A., et al. (2017). An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 6, 1–4. doi:10.1093/gigascience/giw016.