[1] DeMenocal PB. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters. 2004;220:3-24. http://doi.org/10.1016/S0012-821X(04)00003-2.
[2] Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907-13. http://doi.org/10.1038/35016000.
[3] Jansson R, Dynesius M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Evol Syst. 2002;33:741-77. http://doi.org/doi.org/10.1146/annurev.ecolsys.33.010802.150520.
[4] Neumann FH, Bamford MK. Shaping of modern southern African biomes: Neogene vegetation and climate changes. S Afr J Sci. 2015;70:195-212. http://doi.org/10.1080/0035919X.2015.1072859.
[5] Tolley KA, Bowie RC, Measey JG, Price BW, Forest F. The shifting landscape of genes since the Pliocene: terrestrial phylogeography in the Greater Cape Floristic Region. In: Allsopp N, Colville JF, Verboom GA, editors. Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford: Oxford University Press; 2014. p. 142–163.
[6] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686-93. http://doi.org/10.1126/science.1059412.
[7] Burke K, Gunnell Y. The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geol Soc Am Spec Pap. 2008;201. https://doi.org/10.1130/2008.1201.
[8] Hoffmann V, Verboom GA, Cotterill FP. Dated plant phylogenies resolve neogene climate and landscape evolution in the Cape Floristic Region. PLoS One. 2015;10. http://doi.org/10.1371/journal.pone.0137847.
[9] Rommerskirchen F, Condon T, Mollenhauer G, Dupont L, Schefuss E. Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography. 2011;26. http://doi.org/10.1029/2010PA002074.
[10] Bauer AM, Lamb T. Phylogenetic relationships of southern African geckos in the Pachydactylus group (Squamata: Gekkonidae). Afr J Herpetol. 2005;54:105-29. http://doi.org/10.1080/21564574.2005.9635525.
[11] Scott IA, Keogh JS, Whiting MJ. Shifting sands and shifty lizards: molecular phylogeny and biogeography of African flat lizards (Platysaurus). Mol Phylogenetics Evol. 2004;31:618-29. http://doi.org/10.1016/j.ympev.2003.08.010.
[12] Tolley KA, Makokha JS, Houniet DT, Swart BL, Matthee CA. The potential for predicted climate shifts to impact genetic landscapes of lizards in the South African Cape Floristic Region. Mol Phylogenetics Evol. 2009;51:120-30. http://doi.org/10.1016/j.ympev.2008.11.017.
[13] Grab S, Knight J. Landscapes and landforms of South Africa - an overview. In Grab S, Knight J, editors. Landscapes and landforms of South Africa. Cham: Springer; 2015. p. 1-9. http://doi.org/10.1007/978-3-319-03560-4.
[14] Green PF, Duddy IR, Japsen P, Bonow JM, Malan JA. Post‐breakup burial and exhumation of the southern margin of Africa. Basin Res. 2017;29:96-127. http://doi.org/10.1111/bre.12167.
[15] Clark VR, Barker NP, Mucina L. The Great Escarpment of southern Africa: a new frontier for biodiversity exploration. Biodivers Conserv. 2011;20:2543. http://doi.org/10.1007/s10531-011-0103-3.
[16] Partridge TC, Maud RR. Geomorphic evolution of southern Africa since the Mesozoic. South Afr J Geol. 1987;90:179-208.
[17] Moore A, Blenkinsop T, Cotterill F. Southern African topography and erosion history: plumes or plate tectonics?. Terra Nova. 2009;21:310-5. http://doi.org/10.1111/j.1365-3121.2009.00887.x.
[18] De Wit MC. Post-Gondwana drainage and the development of diamond placers in western South Africa. Econ Geol. 1999;94:721-40. http://doi.org/10.2113/gsecongeo.94.5.72.
[19] Kounov A, Viola G, De Wit MJ, Andreoli M. A Mid Cretaceous paleo-Karoo River valley across the Knersvlakte plain (northwestern coast of South Africa): Evidence from apatite fission-track analysis. South Afr J Geol. 2008;111:409-20. http://doi.org/10.2113/gssajg.111.4.409.
[20] Cowling RM, Procheş Ş, Partridge TC. Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. Mol Phylogenetics Evol. 2009;51:64-74. http://doi.org/10.1016/j.ympev.2008.05.034.
[21] Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F, Dreyer LL, Forest F, Galley C, Goldblatt P, Henning JF, Mummenhoff K. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?. Mol Phylogenetics Evol. 2009;51:44-53. http://doi.org/10.1016/j.ympev.2008.01.037.
[22] Branch B. Tortoise, Terrapins and Turtles of Africa. Cape Town: Struik; 2008.
[23] Meyer A, Mouton PL, Mucina L. The biogeographical influence of the Tankwa Karoo Basin on reptile distribution in south-western South Africa. Afr J Herpetol. 2010;59:53-64. 2004;31:618-29. https://doi.org/10.1080/04416651.2010.482002.
[24] Heinicke MP, Turk D, Bauer AM. Molecular phylogeny reveals strong biogeographic signal and two new species in a Cape Biodiversity Hotspot endemic mini-radiation, the pygmy geckos (Gekkonidae: Goggia). Zootaxa. 2017;4312:449-70. http://doi.org/http://dx.doi.org/10.11646/zootaxa.4312.3.
[25] Matthee CA, Flemming AF. Population fragmentation in the southern rock agama, Agama atra: more evidence for vicariance in Southern Africa. Mol Ecol. 2002;11:465-71. http://doi.org/doi.org/10.1046/j.0962-1083.2001.01458.x.
[26] Liu Y, Pham HT, He Z, Wei C. Phylogeography of the cicada Platypleura hilpa in subtropical and tropical East Asia based on mitochondrial and nuclear genes and microsatellite markers. Int J Biol Macromol. 2020;151:529-44. http://doi.org/doi.org/10.1016/j.ijbiomac.2020.02.183.
[27] Lisiecki LE, Raymo ME. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat Sci Rev. 2007;26:56-69. https://doi.org/10.1016/j.quascirev.2006.09.005.
[28] Peçanha WT, Althoff SL, Galiano D, Quintela FM, Maestri R, Gonçalves GL, Freitas TR. Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. PloS one. 2017;12. https://doi.org/10.1371/journal.pone.0187329.
[29] Zhao M, Chang Y, Kimball RT, Zhao J, Lei F, Qu Y. Pleistocene glaciation explains the disjunct distribution of the Chestnut‐vented Nuthatch (Aves, Sittidae). Zool Scr. 2019;48:33-45. https://doi.org/10.1111/zsc.12327.
[30] Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc. 1996;58:247-76. https://doi.org/10.1111/j.1095-8312.1996.tb01434.x.
[31] Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999;68:87-112. https://doi.org/10.1111/j.1095-8312.1999.tb01160.x.
[32] Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B. 2004;359:183-95. https://doi.org/10.1098/rstb.2003.1388.
[33] Rhodin AG, Iverson JB, Bour R, Fritz U, Georges A, Shaffer HB, van Dijk PP. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status. 8th ed. In: Rhodin AG, Iverson JB, van Dijk PP, Saumure RA, Buhlmann K, Pritchard PC, Mittermeier RA, editors. Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Lunenburg: Chelonian Research Monographs; 2017. p. 1-292.
[34] Hofmeyr MD, Vamberger M, Branch W, Schleicher A, Daniels SR. Tortoise (Reptilia, Testudinidae) radiations in Southern Africa from the Eocene to the present. Zool Scr. 2017;46:389-400. https://doi.org/10.1111/zsc.12223.
[35] Zhao Z, Heideman N, Grobler P, Jordaan A, Bester P, Hofmeyr MD. Unraveling the diversification and systematic puzzle of the highly polymorphic Psammobates tentorius (Bell, 1828) complex (Reptilia: Testudinidae) through phylogenetic analyses and species delimitation approaches. J Zool Syst Evol Res. 2020;58:308-26. https://doi.org/10.1111/jzs.12338.
[36] Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853. http://doi.org/10.1038/35002501.
[37] Born J, Linder HP, Desmet P. The greater cape floristic region. J Biogeogr. 2007;34:147-62. https://doi.org/10.1111/j.1365-2699.2006.01595.x.
[38] Cowling RM, Bradshaw PL, Colville JF, Forest F. Levyns’ Law: explaining the evolution of a remarkable longitudinal gradient in Cape plant diversity. S Afr J Sci. 2017;72:184-201. https://doi.org/10.1080/0035919X.2016.1274277.
[39] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231-59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
[40] Peterson AT. Predicting species' geographic distributions based on ecological niche modeling. The Condor. 2001;103:599-605. https://doi.org/10.1093/condor/103.3.599
[41] Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 2008;62:2868-83. https://doi.org/10.1111/j.1558-5646.2008.00482.x.
[42] Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl. 2011;21:335-42. https://doi.org/10.1890/10-1171.1.
[43] Harvey E, Gounand I, Ward CL, Altermatt F. Bridging ecology and conservation: from ecological networks to ecosystem function. J Appl Ecol. 2017;54:371-9. https://doi.org/10.1111/1365-2664.12769.
[44] Luo A, Ling C, Ho SY, Zhu CD. Comparison of methods for molecular species delimitation across a range of speciation scenarios. 2018;67:830-46. https://doi.org/10.1093/sysbio/syy011.
[45] Sukumaran J, Knowles LL. Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci U.S.A. 2017;114:1607-12. https://doi.org/10.1073/pnas.1607921114.
[46] Axelrod DI, Raven PH. Late Cretaceous and Tertiary vegetation history of Africa. In: Werger MJ, van Bruggen AC, editors. Biogeography and ecology of southern Africa. Dordrecht: Springer; 1978. p. 77-130.
[47] Feakins SJ, Demenocal PB. Global and African regional climate during the Cenozoic. In: Werdelin L, Sanders WJ, editors. Cenozoic mammals of Africa. Berkeley: University of California Press; 2010. p. 45-55.
[48] Pokorny L, Riina R, Mairal M, Meseguer AS, Culshaw V, Cendoya J, Serrano M, Carbajal R, Ortiz S, Heuertz M, Sanmartín I. Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Front Genet. 2015;6:154. https://doi.org/10.3389/fgene.2015.00154.
[49] Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279-83. https://doi.org/10.1038/nature06588.
[50] Verboom GA, Linder HP, Forest F, Hoffmann V, Bergh NG, Cowling RM, Allsopp N, Colville JF. Cenozoic assembly of the Greater Cape flora. In: Allsopp N, Colville JF, Verboom GA, editors. Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford: Oxford Press; 2014. p. 93-118.
[51] Cowling RM, Potts AJ, Bradshaw PL, Colville J, Arianoutsou M, Ferrier S, Forest F, Fyllas NM, Hopper SD, Ojeda F, Procheş Ş. Variation in plant diversity in mediterranean‐climate ecosystems: The role of climatic and topographical stability. J Biogeogr. 2015;42:552-64. https://doi.org/10.1111/jbi.12429
[52] Herbert TD, Lawrence KT, Tzanova A, Peterson LC, Caballero-Gill R, Kelly CS. Late Miocene global cooling and the rise of modern ecosystems. Nat Geosci. 2016;9:843-7. https://doi.org/10.1038/ngeo2813.
[53] Hoetzel S, Dupont LM, Marret F, Jung G, Wefer G. Miocene–Pliocene stepwise intensification of the Benguela upwelling over the Walvis Ridge off Namibia. Clim Past Discuss. 2015;11:1913-43. https://doi.org/10.5194/cpd-11-1913-2015.
[54] Cunningham PL, Simang A. Ecology of the Bushmanland tent tortoise (Psammobates tentorius verroxii) in southern Namibia. Chelonian Conserv Biol. 2008;7:119-24. https://doi.org/10.2744/CCB-0656.1.
[55] Braun J, Guillocheau F, Robin C, Baby G, Jelsma H. Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. J Geophys Res Solid Earth. 2014;119:6093-112. https://doi.org/10.1002/2014JB010998.
[56] Wildman M, Brown R, Watkins R, Carter A, Gleadow A, Summerfield M. Post break-up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics. 2015;654:30-55. http://doi.org/10.1016/j.tecto.2015.04.012.
[57] Wildman M, Brown R, Persano C, Beucher R, Stuart FM, Mackintosh V, Gallagher K, Schwanethal J, Carter A. Contrasting Mesozoic evolution across the boundary between on and off craton regions of the South African plateau inferred from apatite fission track and (U‐Th‐Sm)/He thermochronology. J Geophys Res Solid Earth, 2017;122:1517-47. http://doi.org/10.1002/2016JB013478.
[58] Dauteuil O, Bessin P, Guillocheau F. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change. Geomorphology. 2015;233:5-19. http://doi.org/10.1016/j.geomorph.2014.11.017.
[59] Rudge JF, Roberts GG, White NJ, Richardson CN. Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories. J Geophys Res Earth Surf. 2015;120:894-914. http://doi.org/doi.org/10.1002/2014JF003297.
[60] Clark VR. The phytogeography of the Sneeuberg, Nuweveldberge and Roggeveldberge (Great Escarpment): assessing migration routes and endemism (unpublished doctoral dissertation). Rhodes University, 2010.
[61] Tolley KA, Burger M, Turner AA, Matthee CA. Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot. Mol Ecol. 2006;15:781-93. https://doi.org/10.1111/j.1365-294X.2006.02836.x.
[62] Roberts DL, Sciscio L, Herries AI, Scott L, Bamford MK, Musekiwa C, Tsikos H. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: Implications for regional and global fluctuations in climate and ecosystems. Earth-Sci Rev. 2013;124:184-201.
[63] Jung G, Prange M, Schulz M. Uplift of Africa as a potential cause for Neogene intensification of the Benguela upwelling system. Nat Geosci. 2014;7:741-7. http://doi.org/10.1038/NGEO2249.
[64] Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M. Tectonic uplift and Eastern Africa aridification. Science. 2006;313:1419-23. http://doi.org/10.1126/science.1129158.
[65] Potts AJ, Hedderson TA, Vlok JH, Cowling RM. Pleistocene range dynamics in the eastern Greater Cape Floristic Region: a case study of the Little Karoo endemic Berkheya cuneata (Asteraceae). S Afr J Bot. 2013;88:401-13. http://doi.org/10.1016/j.sajb.2013.08.009.
[66] Diekmann B, Fälker M, Kuhn G. Environmental history of the south‐eastern South Atlantic since the Middle Miocene: Evidence from the sedimentological records of ODP Sites 1088 and 1092. Sedimentology. 2003;50:511-29. http://doi.org/10.1046/j.13653091.2003.00562.x.
[67] Rubin F. The physical environment and major plant communities of the Tankwa-Karoo National Park. Koedoe. 1998;41:61-94. http://doi.org/10.4102/koedoe.v41i2.253.
[68] Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, DeMenocal PB, Barreiro M, Pacanowski RC, Philander SG. The Pliocene paradox (mechanisms for a permanent El Niño). Science. 2006;312:1485-9. http://doi.org/10.1126/science.1122666.
[69] Russo IR, Chimimba CT, Bloomer P. Bioregion heterogeneity correlates with extensive mitochondrial DNA diversity in the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from southern Africa-evidence for a species complex. BMC Evol Biol. 2010;10:307. http://doi.org/10.1186/1471-2148-10-307.
[70] Sithaldeen R, Ackermann RR, Bishop JM. Pleistocene aridification cycles shaped the contemporary genetic architecture of southern African Baboons. PloS One. 2015;10. http://doi.org/10.1371/journal.pone.0123207.
[71] Partridge TC, Dollar ES, Moolman J, Dollar LH. The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists. S Afr J Sci. 2010;65:1-47.
[72] Barlow A, Baker K, Hendry CR, Peppin L, Phelps T, Tolley KA, Wüster CE, Wüster W. Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa, Mol Ecol. 2013;22:1134-57. http://doi.org/10.1111/mec.12157.
[73] Snijman DA. Plants of the Greater Cape Floristic Region. 2: The Extra Cape flora. Pretoria: South African National Biodiversity Institute; 2013.
[74] Irish J. Biological characterisation of the Orange-Fish River Basin, Namibia. Report for the Ephemeral River Basins in Southern Africa (ERB) project, Windhoek: Desert Research Foundation of Namibia (DRFN); 2008.
[75] Vamberger M, Hofmeyr MD, Ihlow F, Fritz U. In quest of contact: phylogeography of helmeted terrapins (Pelomedusa galeata, P. subrufa sensu stricto). 2018;6:e4901. http://doi.org/10.7717/peerj.4901.
[76] Daniels SR, Hofmeyr MD, Henen BT, Baard EH. Systematics and phylogeography of a threatened tortoise, the speckled padloper. Anim Conserv. 2010;13:237-46. https://doi.org/10.1111/j.1469-1795.2009.00323.x.
[77] Boycott RC, Bourquin O. The southern African tortoise book: A guide to southern African tortoises, terrapins and turtles. Johannesburg: Lowry Publisher; 2000.
[78] Ballarin F, Li S. 2018. Diversification in tropics and subtropics following the mid‐Miocene climate change: A case study of the spider genus Nesticella. Glob Chang Biol. 2018;24:e577-91. https://doi.org/10.1111/gcb.13958.
[79] Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation. Nature. 2011;470:479-85. https://doi.org/10.1038/nature09670.
[80] IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version. 2018:2018-1.
[81] Hewitt J. On the Cape species and subspecies of the genus Chersinella, Part I. Ann Natal Mus. 1934;7:255-297.
[82] Hewitt J. On the Cape species and subspecies of the genus Chersinella, Part II. Ann Natal Mus. 1934;7:303-352.
[83] Greig JC. Patteris in the distribution of southern African terrestrial tortoises (Chelonia: Cryptodira: Testudinidae). Afr J Herpetol. 1975;14:9.
[84] Greig JC, Burdett PD. Patterns in the distribution of southern African terrestrial tortoises (Cryptodira: Testudinidae). Afr Zool. 1976;11:251-73.
[85] Hofmeyr MD, Leuteritz T, Baard EH. Psammobates tentorius (Bell, 1828). In: Bates MF, Branch WR, Bauer AM, Burger M, Marais J, Alesander GJ, De Villiers MS, editors. Atlas and red list of the reptiles of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute; 2014. p. 70-85.
[86] Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E. Mitochondrial DNA evolution at a turtle's pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol. 1992;9:457-73. https://doi.org/10.1093/oxfordjournals.molbev.a040735.
[87] Lourenço JM, Claude J, Galtier N, Chiari Y. Dating cryptodiran nodes: origin and diversification of the turtle superfamily Testudinoidea. Mol Phylogenet Evol. 2012;62:496-507. https://doi.org/10.1016/j.ympev.2011.10.022.
[88] Zheng Y, Peng R, Kuro-o M, Zeng X. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). Mol Biol Evol. 2011;28:2521-35. https://doi.org/10.1093/molbev/msr072.
[89] Townsend TM, Alegre RE, Kelley ST, Wiens JJ, Reeder TW. Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Mol Phylogenet Evol. 2008;47:129-42. https://doi.org/10.1016/j.ympev.2008.01.008.
[90] Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U.S.A. 1989;86:6196-200. https://doi.org/10.1073/pnas.86.16.6196.
[91] Palumbi SR, Martin A, Romano S, Mcmillan WO, Stice L, Grabowski L. The simple fool’s guide to PCR, A collection of PCR protocols, version 2. Honolulu: University of Hawaii; 1991.
[92] Pääbo S, Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 159-166.
[93] Whiting AS, Bauer AM, Sites Jr JW. Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol Phylogenet Evol. 2003;29:582-98. https://doi.org/10.1016/S1055-7903(03)00142-8.
[94] Stuart BL, Parham JF. Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Mol Phylogenet Evol. 2004;31:164-77. https://doi.org/10.1016/S1055-7903(03)00258-6.
[95] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792-7. https://doi.org/10.1093/nar/gkh340.
[96] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054.
[97] Lanfear R, Calcott B, Ho SY, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695-701. https://doi.org/10.1093/molbev/mss020.
[98] Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. https://doi.org/10.1038/nmeth.2109.
[99] Swofford DL. Paup 4.0 beta version for windows: Phylogenetic analysis using parsimony. Sunderland: Sinauer Associates; 1998.
[100] Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol. 2013;30:1720-8. https://doi.org/10.1093/molbev/mst064.
[101] Ciofi C, Milinkovitch MC, Gibbs JP, Caccone A, Powell JR. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Mol Ecol. 2002;11:2265-83. https://doi.org/10.1046/j.1365-294X.2002.01617.x
[102] Schwartz TS, Osentoski M, Lamb T, Karl SA. Microsatellite loci for the North American tortoises (genus Gopherus) and their applicability to other turtle species, Mol Ecol Notes. 2003;3:283-6.
[103] Forlani AB, Crestanello B, Mantovani S, Livoreil B, Zane L, Bertorelle G, Congiu L. Identification and characterization of microsatellite markers in Hermann's tortoise (Testudo hermanni, Testudinidae), Mol Ecol Notes. 2005;5:228-30. https://doi.org/10.1111/j.1471-8286.2005.00890.x
[104] Paquette SR, Shore GD, Behncke SM, Lapointe FJ, Louis JR EE. Characterization of polymorphic microsatellite markers for the endangered Malagasy radiated tortoise (Geochelone radiata). Mol Ecol Notes. 2005;5:527-30. https://doi.org/10.1111/j.1471-8286.2005.00979.x
[105] Mandimbihasina AR, Engberg SE, Shore GD, Razafimahatratra E, Tiandray H, Lewis RE, Brenneman RA, Louis EE. Characterization of 20 microsatellite markers in the plowshare tortoise, Astrochelys yniphora. Conserv Genet. 2009;10:1085-8. https://doi.org/10.1007/s10592-008-9715-x
[106] Vamberger M, Stuckas H, Fritz U. Fifteen microsatellite markers for the stripe-necked terrapin Mauremys caspica (Testudines: Geoemydidae) and cross-amplification tests in M. rivulata, Conserv Genet Resour. 2011;3:87-9. https://doi.org/10.1007/s12686-010-9297-z
[107] Orozco-terWengel P, Chiari Y, Vieites DR, Pedrono M, Louis EE. Isolation and characterization of six polymorphic microsatellite loci for the Malagasy spider tortoise, Pyxis arachnoides and cross-amplification in Pyxis planicauda. Amphib-reptil. 2013;34:125-8. https://doi.org/10.1163/15685381-00002866
[108] Glaubitz JC. Convert: a user‐friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes. 2004;4:309-10. https://doi.org/10.1111/j.1471-8286.2004.00597.x
[109] Lischer HE, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012;28:298-9. https://doi.org/10.1093/bioinformatics/btr642
[110] Holland MM, Parson W. GeneMarker® HID: A reliable software tool for the analysis of forensic STR data. J Forensic Sci. 2011;56:29-35. https://doi.org/10.1111/j.1556-4029.2010.01565.x
[111] Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535-8. https://doi.org/10.1111/j.1471-8286.2004.00684.x
[112] Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. https://doi.org/10.1186/1471-2156-11-94.
[113] Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403-5.
[114] Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567-87. [115] Earl DA. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359-61. https://doi.org/10.1007/s12686-011-9548-7.
[116] Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resources. 2015;15:1179-91. https://doi.org/10.1111/1755-0998.12387.
[117] Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10. https://doi.org/10.1371/journal.pcbi.1003537.
[118] Jones G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol. 2017;74:447-67. https://doi.org/10.1007/s00285-016-1034-0.
[119] Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312-3. https://doi.org/10.1093/bioinformatics/btu033.
[120] Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182-92. https://doi.org/10.1093/sysbio/42.2.182.
[121] Huelsenbeck JP, Rannala B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol. 2004;53:904-13. https://doi.org/10.1080/10635150490522629.
[122] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2. http://doi.org/10.1093/bioinformatics/btp187.
[123] Kehlmaier C, Zhang X, Georges A, Campbell PD, Thomson S, Fritz U. Mitogenomics of historical type specimens of Australasian turtles: clarification of taxonomic confusion and old mitochondrial introgression. Sci Rep. 2019;9:1-2. https://doi.org/10.1038/s41598-019-42310-x.
[124] Dupanloup I, Schneider S, Excoffier L. A simulated annealing approach to define the genetic structure of populations. Mol Ecol. 2002;11:2571-81. https://doi.org/10.1046/j.1365-294x.2002.01650.x.
[125] Matzke NJ. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts, R package, version 0.2. 2013.
[126] Matzke NJ. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol. 2014;63:951-70. http://doi.org/10.1093/sysbio/syu056.
[127] Massana KA, Beaulieu JM, Matzke NJ, O'Meara BC. Non-null effects of the null range in biogeographic models: exploring parameter estimation in the dec model. BioRxiv. 2015:026914. http://doi.org/10.1101/026914.
[128] Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenetics Evol. 2015;87:46-9. http://doi.org/10.1016/j.ympev.2015.03.008.
[129] Matzke NJ. Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC) analyses. Frontiers of Biogeography. 2012;4 suppl 1:210.
[130] Matzke NJ. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography. 2013;5.
[131] Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PloS One. 2014;9. http://doi.org/10.1371/journal.pone.0089543.
[132] Shi JJ, Rabosky DL. Speciation dynamics during the global radiation of extant bats. Evolution. 2015 Jun;69(6):1528-45. http://doi.org/10.1111/evo.12681.
[133] Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5:701-7. http://doi.org/10.1111/2041-210X.12199.
[134] Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289-90. http://doi.org/10.1093/bioinformatics/btg412.
[135] Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst Biol. 2014;63:610-27. http://doi.org/10.1093/sysbio/syu025.
[136] Wickham H, Wickham MH. Package ‘plyr’. Obtenido de. https://cran. rproject. org/web/packages/dplyr/dplyr. pdf. 2020.
[137] Wickham H, Hester J, Francois R. Readr: Read rectangular text data. R package version. 2017;1.
[138] Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H. ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 2.2.1.
[139] Ricklefs RE. Estimating diversification rates from phylogenetic information. Trends Ecol Evol. 2007;22:601-10. https://doi.org/10.1016/j.tree.2007.06.013.
[140] Maddison WP, Midford PE, Otto SP. Estimating a binary character's effect on speciation and extinction. Syst Biol. 2007;56:701-10. http://doi.org/10.1080/10635150701607033.
[141] Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol. 2011;60:451-65. http://doi.org/10.1093/sysbio/syr046.
[142] FitzJohn RG. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol. 2012;3:1084-92. http://doi.org/10.1111/j.2041-210X.2012.00234.x.
[143] Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012 Apr;3(2):217-23. http://doi.org/10.1111/j.2041-210X.2011.00169.x.
[144] FitzJohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol. 2009;58:595-611. http://doi.org/10.1093/sysbio/syp067.
[145] Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ. geiger v2. 0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 2014;30:2216-8. https://doi.org/10.1093/bioinformatics/btu181
[146] Aiello‐Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541-5. https://doi.org/10.1111/ecog.01132
[147] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965-78. https://doi.org/10.1002/joc.1276
[148] Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A, Hijmans MR. Package ‘raster’. R package. 2015.
[149] Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008;31:161-75. https://doi.org/10.1111/j.0906-7590.2008.5203.x.
[150] Bivand R, Lewin-Koh N. maptools: Tools for reading and handling spatial objects. R package version 0.8-39.
[151] Bivand R, Rundel C, Pebesma E, Stuetz R, Hufthammer KO, Bivand MR. Package ‘rgeos’. The Comprehensive R Archive Network (CRAN). 2017.
[152] Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E, Bivand MR. Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. Available online: https://cran. r-project. org/web/packages/rgdal/index. html (accessed on 15 October 2017). 2015.
[153] Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MR. Package ‘dismo’. Circles. 2017;9:1-68.
[154] Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. ENMeval: Automated runs and evaluations of Ecological Niche Models. R package Version 0.2.2. (2018).
[155] Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607-11. https://doi.org/10.1111/j.1600-0587.2009.06142.x