Alani F, Anderson WA, Moo-Young M (2008) New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases. Biotechnol Lett 30:123–126. https://doi.org/10.1007/s10529-007-9500-9
Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3, 4. https://doi.org/10.1186/1754-6834-3-4
Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosome to cellulosomics. Chem Rec 8:364–377. https://doi.org/doi:10.1002/tcr.20160
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248-254. http://doi.org/10.1006/abio.1976.9999
Brunner K, Lichtenauer AM, Kratochwill K, Delic M, Mach RL (2007) Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr Genet 52:213-220. https://doi.org/10.1007/s00294-007-0154-x
Chan CS, Sin LL, Chan KG, Shamsir MS, Manan FA, Sani RK, Goh KM (2016) Characterization of a glucose‑tolerant β-glucosidase from Anoxybacillus sp. DT3‑1. Biotechnol Biofuels 9: 174. https://doi.org/10.1186/s13068-016-0587-x. eCollection 2016
Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3: 3.https://doi.org/10.1186/1754-6834-3-3
Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1995) Purification and characterization of a less randomly acting endo-1,4-beta-D-glucanase from the culture filtrates of Fusarium oxysporum. Arch Biochem Biophys 316(1):428-433. https://doi.org/10.1006/abbi.1995.1057
Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol 11(4):236-239. https://doi.org/10.1016/0141-0229(89)90098-7
de Cassia Pereira J, Paganini Marques N, Rodrigues A, Brito de Oliveira T, Boscolo M, da Silva R, Gomes E, Bocchini Martins DA (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939. https://doi.org/10.1111/jam.12757
Fan LH, Zhang ZJ, Mei S, Lu YY, Li M, Wang ZY, Yang JG, Yang ST, Tan TW (2016) Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for coutilization of cellulose-mixed sugars. Biotechnol Biofuels 9:137. https://doi.org/ 10.1186/s13068-016-0554-6.eCollection 2016
Feng T, Liu H, Xu Q, Sun J, Shi H (2015) Identification and characterization of two endogenous β-glucosidases from the termite Coptotermes formosanus. Appl Biochem Biotechnol 176(7):2039–2052. https://doi.org/10.1007/s12010-015- 1699-7
Gomes DG, Serna-Loaiza S, Cardona CA, Gama M, Domingues L (2018) Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresour Technol 267:347-355. https://doi.org/10.1016/j.biortech.2018.07.056
Gómez-Gómez E, Isabel M, Roncero G, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-beta-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40(4): 268-275. https://doi.org/10.1007/s00294-001-0260-0
Grasso G, Salomone F, Tundo GR, Pappalardo G, Ciaccio C, Spoto G, Pietropaolo A, Coletta M (2012) Metal ions affect insulin-degrading enzyme activity. J Inorg Biochem 117:351–358.https://doi.org/10.1016/j.jinorgbio.2012.06.010
Han Y, Chen H (2008) Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresour Technol 99:6081–6087. https://doi.org/10.1016/j.biortech.2007.12.050
Haven MO, Jørgensen H (2013) Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels 6:165. https://doi.org/10.1186/1754-6834-6-165
Ikeda Y, Park EY, Okida N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97:1030–1035. https://doi.org/10.1016/j.biortech.2005.04.040
Joo AR, Jeya M, Lee KM, Sim WI, Kim JS, Kim IW, Kim YS, Oh DK, Gunasekaran P, Lee JK (2009) Purification and characterization of a β-1, 4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl Microbiol Biotechnol 83:285–294. https://doi.org/10.1007/s00253-009-1861-7
Jo YY, Jo KJ, Jin YL, Kim KY, Shim JH, Kim YW, Park RD (2003) Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16. Biosci Biotechnol Biochem 67:1875-1882. https://doi.org/10.1271/bbb.67.1875
Kamila PB, Piotr P, Halina K, Kazimierz P, Marta K, Marcin D (2016) Evaluation of pine kraft cellulosic pulps and fines from papermaking as potential feedstocks for biofuel production. Cellulose 23:649–659. https://doi.org/10.1007/s10570-015-0808-7
Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, Shibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y (2008) Isoflavone aglycones production from isoflavone glycosides by display of beta-glucosidase from Aspergillus oryzae on yeast cell surface. Appl Microbiol Biotechnol 79(1): 51-60. https://doi.org/10.1007/s00253-008-1393-6
Kim YS, Yeom SJ, Oh DK (2011) Characterization of a GH3 family beta-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J Agric Food Chem 59(21):11812–11818. https://doi.org/10.1021/jf2025192
Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:14. https://doi.org/10.1186/1754-6834-2-14
Kumar PKR, Singh A, Schuegerl K (1991) Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum. Process Biochemistry 26(4):209-216. https://doi.org/10.1016/0032-9592(91)85002-6
Kwon KS, Lee J, Kang HG, Hah YC (1994) Detection of β-Glucosidase Activity Polyacrylamide Gels with Esculin as Substrate. Appl Environ Microbiol 12: 4584-4586.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
Lee C, O'Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48(11):1624-1134. https://doi.org/10.1093/pcp/pcm135
Lee HJ, Lee YS, Choi YL(2018) Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. Biotechnol Biofuels 11:303. https://doi.org/10.1186/s13068-018-1299-1
Liew KJ, Lim L, Woo HY, Chan KG, Shamsir MS, Goh KM (2018) Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis. Int J Biol Macromol 115:1094–1102. https://doi.org/10.1016/j.ijbiomac.2018.04.156
Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658-666. https://doi.org/10.1021/ja01318a036
Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic Fungi: Their Physiology and Enzymes . Microbiol Mol Biol Rev 64:461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000
Makropoulou M, Christakopoulos P, Tsitsimpikou C, Kekos D, Kolisis FN, Macris BJ (1998) Factors affecting the specificity of beta-glucosidase from Fusarium oxysporum in enzymatic synthesis of alkyl-beta-D-glucosides. Int J Biol Macromol 22(2):97-101. https://doi.org/10.1016/s0141-8130(97)00092-5
Matsumoto K, Endo Y, Tamiya N, Kano M, Miyauchi K (1974) Studies on cellulase produced by the phytopathogens. Purification and enzymatic properties of cellulase of Fusarium moniliforme. J Biochem 76:563–572. https://doi.org/10.1093/oxfordjournals.jbchem.a130600
Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Ltd. Biotec P (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb Technol 34:332-341. https://doi.org/10.1016/j.enzmictec.2003.11.011
Moretti MM, Bocchini-Martins DA, Silva RD, Rodrigues A, Sette LD, Gomes E (2012) Selection of Thermophilic and Thermotolerant Fungi for the Production of Cellulases and Xylanases Under Solid-State Fermentation. Braz J Microbiol 43(3):1062-1071. https://doi.org/10.1590/S1517-838220120003000032
Ng IS, Tsai SW, Ju YM, Yu SM, Ho TH (2011) Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour Technol 102, 6073–6081. https://doi.org/10.1016/j.biortech.2010.12.110
Oyekola OO, Ngesi N, Whiteley CG (2007) Isolation, purification and characterisation of an endoglucanase and β-glucosidase from an anaerobic sulphidogenic bioreactor. Enzyme Microb Technol 40:637–644. https://doi.org/10.1016/j.enzmictec.2006.05.020
Pei J, Pang Q, Zhao L, Fan S, Shi H (2012) Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 5:31. https://doi.org/10.1186/1754-6834-5-31
Prawitwong P, Waeonukul R, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Deng L, Sermsathanaswadi J, Septiningrum K, Mori Y, Kosugi A (2013) Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase. Biotechnol Biofuels 6:184. https://doi.org/10.1186/1754-6834-6-184
Qin YL, He HY, Li N, Ling M, Liang ZQ (2010) Isolation of a thermostable cellulase-producing Fusarium chlamydosporum and characterization of the cellulolytic enzymes. World J Microb Biot 26(11):1991-1997. https://doi.org/10.1007/s11274-010-0383-x
Qin YL, Zhang YK, He HY, Zhu J, Chen GG, Li W, Liang ZQ (2011) Screening and Identification of a Fungal β-Glucosidase and the Enzymatic Synthesis of Gentiooligosaccharide. Appl Biochem Biotechnol 163:1012–1019. https://doi.org/10.1007/s12010-010-9105-y
Quarantin A, Castiglioni C, Schäfer W, Favaron F, Sella L (2019) The Fusarium Graminearum Cerato-Platanins Loosen Cellulose Substrates Enhancing Fungal Cellulase Activity as Expansin-Like Proteins. Plant Physiol Biochem 139:229-238. https://doi.org/10.1016/j.plaphy.2019.03.025
Royer JC, Moyer DL, Reiwitch SG, Madden MS, Jensen EB, Brown SH, Yonker CC, Johnston JA, Golightly EJ, Yoder WT, Shuster JR (1995) Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Biotech 13(13):1479-1483. https:doi.org/10.1038/nbt1295-1479
Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190
Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M (1997) cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem 24:584-591. https://doi.org/10.1111/j.1432-1033.1997.00584.x
Sampathnarayanan A, Shanmugasundaram ER (1970) Studies on cellulase of the cotton wilt pathogen Fusarium vasinfectum Atk. Mycopathol Mycol Appl 41(3):223-232. https://doi.org/10.1007/BF02051100
Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295. https://doi.org/10.1016/ j.biortech.2007.11.013
Scheibner M, Hülsdau B, Zelena K, Nimtz M, de Boer L, Berger RG, Zorn H (2008) Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Appl Microbiol Biotechnol 77:1241-1250. https://doi.org/10.1007/s00253-007-1261-9
Seidle HF, Allison SJ, George E, Reuben E, Huber RE (2006) Trp-49 of the family 3 beta-glucosidase from Aspergillus niger is important for its transglucosidic activity: creation of novel beta-glucosidases with low transglucosidic efficiencies. Arch Biochem Biophys 455: 110-118. https://doi.org/10.1016/j.abb.2006.09.016
Seidle HF, Huber RE (2005) Transglucosidic reactions of the Aspergillus niger family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys 436(2):254-264. https://doi.org/10.1016/ j.abb.2005.02.017
Shoemaker SP, Brown RD (1978) Characterization of endo-1,4-beta-D-glucanases purified from Trichoderma virid . Biochim Biophys Acta 523:147-161. https://doi.org/10.1016/0005-2744(78)90017-7
Shrivastava LK, Kumar A, Senger SS, Mishra VN, Panda A (2017) Influence of zypmite on productcivity and nutrient uptake of chickpea (Cicer arietinum ) crop under rainfed condition Chhattisgarh plain region. Legume Res 41:95–101. https://doi.org/10.18805/LR-3586
Singh A, Kumar PK (1991) Fusarium oxysporum: status in bioethanol production. Crit Rev Biotechnol 11(2):129-147. https://doi.org/10.3109/07388559109040619
Stricks W, Kolthoff IM (1953) Reactions between mercuric mercury and cysteine and glutathione. apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and -glutathione, J. Am. Chem. Soc 75: 5673–5681. https://doi.org/ 10.1021/ja01118a060
Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97: 211–217. https://doi.org/10.1016/j.biortech.2005.02.025
Teugjas H, Väljamäe P (2013) Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels 6:105. https://doi.org/10.1186/1754-6834-6-105
Tian S, Luo XL, Yang XS, Zhu JY (2010) Robust cellulosic ethanol produc‑tion from SPORL‑pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Bioresour Technol 101: 8678–85. https://doi.org/10.1016/ j.biortech.2010.06.069
Tiwari R, Singh PK, Singh S, Nain, Pawan KS, Nain, Shukla P (2017) Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis. Biotechnol Biofuels 10:246. https://doi.org/10.1186/s13068-017-0932-8
Wen Z, Liao W, Chen S (2005) Production of cellulase by Trichoderma reesei from dairy manure. Bioresour Technol 96: 491–499. https://doi.org/10.1016/j.biortech.2004.05.021
Wood TM (1969) The cellulase of Fusarium solani. Resolution of the enzyme complex. Biochem J 115(3):457–464. https://doi.org/10.1042/bj1150457
Wood TM, McCrae SI (1977) Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydr Res 57: 117-133. https://doi.org/10.1016/s0008-6215(00)81925-4
Xia W, Xu XX, Qian LC, Shi PJ, Bai YG, Luo HY, Ma R, Yao B (2016) Engineering a highly active thermophilic β‑glucosidase to enhance its pH stability and saccharification performance. Biotechnol Biofuels 9:147. https://doi.org/10.1186/s13068-016-0560-8
Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, Wang Z (2015) Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. J Ind Microbiol Biotechnol 42:839–850.https://doi.org/10.1007/s10295-015-1608-7
Vaidy M, Seeta R, Mishra C, Deshpande V, Rao M (1984) A rapid and simplified procedure for purification of a cellulase from Fusarium lini. Biotechnol Bioeng 26(1):41-45. https://doi.org/10.1002/bit.260260109
Villena MA, Iranzo JFú, Pérez AIB (2007) β-glucosidase activity in wine yeasts: application in enology. Enzym Microb Technol 40:420–425. http://doi.org/10.1016/j.enzmictec.2006.07.013
Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34. https://doi.org/10.1007/s002530100624
Zhang M, Su R, Qi W, He Z (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol 160:1407–1414. https://doi.org/10.1007/s12010-009-8602-3
Zhang Z, Liu J, Lan J, Duan C, Ma Q, Feng J (2014) Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol Biofuels 7: 107. https://doi.org/10.1186/1754-6834-7-107