[1] B. Oregan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nat. 353, 737-740 (1991)
[2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595-6663 (2010)
[3] M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155-162 (2015)
[4] D. Zhao, L. Niu, L. Wang, Plasmon enhanced heterogeneous electron transfer with continuous band energy model. Chem. Phys. 493, 194-199 (2017)
[5] M. Yu, Y.B. Meng, J.D. Zhang, J.H. Liu, S.M. Li, Super helical Au/TiO2 nanocomposites based on plasmid DNA for efficiency dye-sensitized solar cells. J. Mater. Sci.-Mater. Electron. 28(5), 4138-4145 (2016)
[6] M.S. Wu, Z.Z. Ceng, C.Y. Chen, Surface modification of porous TiO2 electrode through pulse oxidative hydrolysis of TiCl3 as an efficient light harvesting photoanode for dye-sensitized solar cells. Electrochim. Acta 191, 256-262 (2016)
[7] A. Kunzmann, M. Stanzel, W. Peukert, R.D. Costa, D.M. Guldi, Binary indium-zinc oxide photoanodes for efficient dye-sensitized solar cells. Adv. Energy Mater. 6, 1501075 (2016)
[8] R.K. Chava, W.M. Lee, S.Y. Oh, K.U. Jeong, Y.T. Yu, Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells 161, 255-262 (2017)
[9] J. Yu, Q. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56, 6293-6298 (2011)
[10] S. Son, S.H. wang, C. Kim, J. Yun, J. Jang, Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. Acs Appl. Mater. Interfaces 5, 4815-4820 (2013)
[11] B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932-15938 (2006)
[12] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111-1116 (2011)
[13] A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, D.S. Ginger, Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501-1505 (2010)
[14] C. Liu, T. Li, Y. Zhang, T. Kong, C. Li, Silver nanoparticle modified TiO2 nanotubes with enhanced the efficiency of dye-sensitized solar cells. Microporous Mesoporous Mater. 287, 228-233 (2019)
[15] Y. Li, Y. Zhou, Y. Wang, R. Zhou, Q. Ling, H. Niu, W. Zhang, C. Wang, J. Qiu, Z. Guo, Au nanoparticle-decorated urchin-like TiO2 hierarchical microspheres for high performance dye-sensitized solar cells. Electrochim. Acta 293, 230-239 (2019)
[16] Y. Li, H. Wang, Q. Feng, G. Zhou, Z.S. Wang, Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 6, 2156-2165 (2013)
[17] R.A. Naphade, M. Tathavadekar, J.P. Jog, S.A. Agarkar, S.B. Ogale, Plasmonic light harvesting of dye sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers. J. Mater. Chem. 2, 975-984 (2014)
[18] M. Li, N. Yuan, Y. Tang, L. Pei, Y. Zhu, J. Liu, L. Bai, M. Li, Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles. J. Mater. Sci. Technol. 35, 604-609 (2019)
[19] J. Choma, A. Dziura, D. Jamio A, P. Nyga, M. Jaroniec, Preparation and properties of silica–gold core–shell particles. Colloid Surf. A-Physicochem. Eng. Asp. 373, 167-171 (2011)
[20] Z. Jiang, W. Wei, D. Mao, C. Chen, Y. Shi, X. Lv, J. Xie, Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7, 784-797 (2014)
[21] Y. Zhang, Z.Y. Zhao, J.R. Chen, L. Cheng, J. Chang, W.C. Sheng, C.Y. Hu, S.S. Cao, C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl. Catal. B-Environ. 166, 715-722 (2015)
[22] D. Hu, Y. Huang, H. Liu, H. Wang, S. Wang, M. Shen, M. Zhu, X. Shi, The assembly of dendrimer-stabilized gold nanoparticles onto electrospun polymer nanofibers for catalytic applications. J. Mater. Chem. 2, 2323-2332 (2014)
[23] K.P.O. Mahesh, D. Kuo, B. Huang, Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. J. Mol. Catal. A-chem. 396, 290-296 (2015)
[24] H. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N. Park, Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg. Chim. Acta 361, 677-683 (2008)
[25] Y. Li, J. Wang, X. Liu, C. Shen, K. Xie, B. Wei, Au/TiO2 hollow spheres with synergistic effect of plasmonic enhancement and light scattering for improved dye-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 31691-31698 (2017)
[26] H. Chen, C.Y. Hong, C. Kung, C. Mou, K.C.W. Wu, K. Ho, A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells. J. Power Sources 288, 221-228 (2015)
[27] Y. Zhao, J. Zhai, T. Wei, L. Jiang, D. Zhu, Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. J. Mater. Chem. 17, 5084-5089 (2007)
[28] Q. Wang, J. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945-14953 (2005)
[29] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872-13880 (2006)