Abugoch L, Castro E, Tapia C et al (2010) Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage. Int J Food Sci Technol 44:2013–2020
Adolf VI, Shabala S, Andersen MN et al (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129. https://doi.org/10.1007/s11104-012-1133-7
Alagarsamy K, Shamala LF, Wei S (2018) Protocol: High-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods 14:1–8. https://doi.org/10.1186/s13007-018-0285-8
Aloisi I, Parrotta L, Ruiz KB et al (2016) New insight into quinoa seed quality under salinity: Changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front Plant Sci 7:1–21. https://doi.org/10.3389/fpls.2016.00656
Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119:770–778
An J, Cheng C, Hu Z et al (2018) The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ Exp Bot 155:45–55. https://doi.org/10.1016/j.envexpbot.2018.06.025
Bazile D, Jacobsen S, Verniau A (2016) The Global Expansion of Quinoa: Trends and Limits. Front Plant Sci 7:1–6. https://doi.org/10.3389/fpls.2016.00622
Bodner-Montville J, Ahuja JKC, Ingwersen LA et al (2006) USDA Food and Nutrient Database for Dietary Studies: Released on the web. J Food Compos Anal 19:100–107. https://doi.org/10.1016/j.jfca.2006.02.002
Butler NM, Jansky SH, Jiang J (2020) First-generation genome editing in potato using hairy root transformation. Plant Biotechnol J 18:2201–2209. https://doi.org/10.1111/pbi.13376
Cai D (1997) Positional Cloning of a Gene for Nematode Resistance in Sugar Beet. ence 275:832–834
Cao D, Hou W, Song S et al (2009) Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tissue Organ Cult 96:45–52. https://doi.org/10.1007/s11240-008-9458-x
Chen L, Cai Y, Liu X et al (2018) Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J 6:162–171. https://doi.org/10.1016/j.cj.2017.08.006
Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204. https://doi.org/10.1007/PL00008126
Clemow SR, Clairmont L, Madsen LH, Guinel FC (2011) Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. Plant Methods 7:1–15. https://doi.org/10.1186/1746-4811-7-46
Del Toro F, Tenllado F, Chung BN, Canto T (2014) A procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperature-sensitive processes in plant-pathogen interactions. Mol Plant Pathol 15:848–857. https://doi.org/10.1111/mpp.12136
Escuredo O, González Martín MI, Wells Moncada G et al (2014) Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J Cereal Sci 60:67–74. https://doi.org/10.1016/j.jcs.2014.01.016
Filho AMM, Pirozi MR, Borges JTDS et al (2015) Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev food ence Nutr 57:1618–1630
Gelvin, Stanton B (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68
Gomes C, Dupas A, Pagano A et al (2019) Hairy Root Transformation: A Useful Tool to Explore Gene Function and Expression in Salix spp. Recalcitrant to Transformation. Front Plant Sci 10:1–6. https://doi.org/10.3389/fpls.2019.01427
Gonzalez JA, Konishi Y, Bruno M et al (2012) Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J Sci Food Agric 92:1222–1229
Guimaraes LA, Pereira BM, Araujo ACG et al (2017) Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods 13:1–10. https://doi.org/10.1186/s13007-017-0176-4
Gurusamy PD, Schäfer H, Ramamoorthy S, Wink M (2017) Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One 12:1–23. https://doi.org/10.1371/journal.pone.0182367
Hariadi Y, Marandon K, Tian Y et al (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193. https://doi.org/10.1093/jxb/erq257
Imamura T, Isozumi N, Higashimura Y et al (2019) Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. Plant Biotechnol J 17:969–981. https://doi.org/10.1111/pbi.13032
Ishizaki T, Hoshino Y, Masuda K, Oosawa K (2002) Explants of Ri-transformed hairy roots of spinach can develop embryogenic calli in the absence of gibberellic acid, an essential growth regulator for induction of embryogenesis from non-transformed roots. Plant Sci 163:223–231. https://doi.org/10.1016/S0168-9452(02)00097-3
Jacobsen SE, Mujica A, Jensen CR (2003) The Resistance of Quinoa (Chenopodium quinoaWilld.) to Adverse Abiotic Factors. Food Rev Int 19:99–109
Jarvis DE, Ho YS, Lightfoot DJ et al (2017) Corrigendum: The genome of Chenopodium quinoa. Nature 545:510
Jin H, Jia JF, Hao JG (2003) Protoplasts from Agrobacterium rhizogenes-transformed cell line of Medicago sativa L. regenerated to hairy roots. Vitr Cell Dev Biol - Plant 39:208–211. https://doi.org/10.1079/IVP2002367
Jones H, Ooms G, Jones MGK (1989) Transient gene expression in electroporated Solanum protoplasts. Plant Mol Biol 13:503–511. https://doi.org/10.1007/BF00027310
Kajikawa M, Morikawa K, Abe Y et al (2010) Establishment of a transgenic hairy root system in wild and domesticated watermelon (Citrullus lanatus) for studying root vigor under drought. Plant Cell Rep 29:771–778. https://doi.org/10.1007/s00299-010-0863-3
Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306
Krenek P, Samajova O, Luptovciak I et al (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 33:1024–1042. https://doi.org/10.1016/j.biotechadv.2015.03.012
Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481
Lam S, Lam B, Harrison L, Strobel G (1984) Genetic information on the Ri plasmid of Agrobacterium rhizogenes determines host specificity. Plant ence Lett 34:345–352
Levy M, Rachmilevitch S, Abel S (2005) Transient Agrobacterium-mediated gene expression in the Arabidopsis hydroponics root system for subcellular localization studies. Plant Mol Biol Report 23:179–184
Lim JG, Park HM, Yoon KS (2020) Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Sci Nutr 8:694–702. https://doi.org/10.1002/fsn3.1358
López-Marqués RL, Nørrevang AF, Ache P et al (2020) Prospects for the accelerated improvement of the resilient crop quinoa. J Exp Bot 71:5333–5347. https://doi.org/10.1093/jxb/eraa285
Ma Z, Liu JJ, Zamany A, Williams H (2020) Transient gene expression in western white pine using agroinfiltration. J For Res 31:1823–1832. https://doi.org/10.1007/s11676-019-00938-5
Marion J, Bach L, Bellec Y et al (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179. https://doi.org/10.1111/j.1365-313X.2008.03596.x
Mellor KE, Hoffman AM, Timko MP (2012) Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 8:1–12. https://doi.org/10.1186/1746-4811-8-22
Mooney BC, Graciet E (2020) A simple and efficient Agrobacterium -mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. Plant Direct 4
Orsini F, Accorsi M, Gianquinto G et al (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831
Polturak G, Breitel D, Grossman N et al (2016) Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol 210:269–283. https://doi.org/10.1111/nph.13796
Repo-Carrasco R, C., et al (2003) Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kaiwa (Chenopodium pallidicaule). Food Rev Int 19
Ruiz KB, Biondi S, Martínez EA et al (2016) Quinoa – a Model Crop for Understanding Salt-tolerance Mechanisms in Halophytes. G Bot Ital 150:357–371
Ruiz KB, Biondi S, Oses R et al (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359. https://doi.org/10.1007/s13593-013-0195-0
Savka MA (1990) Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503–508
Wilson HD (1990) Quinua and Relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Econ Bot 44:92–110. https://doi.org/10.1007/BF02860478
Xu H, Zhou X, Lu J et al (2006) Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Sci China Ser C Life Sci 49:305–310. https://doi.org/10.1007/s11427-006-0305-1
Xue R, Wu X, Wang Y et al (2017) Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci 260:1–7. https://doi.org/10.1016/j.plantsci.2017.03.011
Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551. https://doi.org/10.1046/j.1365-313X.2000.00760.x
Zhang Y, Chen M, Siemiatkowska B et al (2020) A Highly Efficient Agrobacterium-Mediated Method for Transient Gene Expression and Functional Studies in Multiple Plant Species. Plant Commun 1:100028. https://doi.org/10.1016/j.xplc.2020.100028
Zou C, Chen A, Xiao L et al (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res 27:1327–1340. https://doi.org/10.1038/cr.2017.124