Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S (1999) Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186. doi: 10.1016/j.jflm.2009.01.004
Alajmi M, Rehman M, Hussain A, Rather G (2018) Pharmaco informatics approach for the identification of polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. Int J Biol Macromol 116:173–181. doi: 10.1016/j.ijbiomac.2018.05.023
Bai YF, Yin H, Bi HP, Zhuang YB, Liu T, Ma YH (2016) De novo biosynthesis of gastrodin in Escherichia coli. Metab Eng 35:138–147. doi: 10.1016/j.ymben.2016.01.002
Britsch L (1990) Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase. Arch Biochem Biophys 282:152–160. doi: 10.1016/0003-9861(90)90099-K.
Carbon C, Thurotte A, Wilson A, Perreau F, Kirilovsky D (2015) Biosynthesis of soluble carotenoid holoproteins in Escherichia coli. Sci Rep-UK 5:9085. doi: 10.1038/srep09085
Cheng AX, Han XJ, Wu YF, Lou HX (2014) The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int J Mol Sci 15:1080–1095. doi: 10.3390/ijms15011080
Ding BJ, Liénard M, Wang HL, Zhao CH, Löfstedt C (2011) Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). Insect Biochem Molec 41:715–722. doi: 10.1016/j.ibmb.2011.05.003
Ding SH, Wang RR, Zhang J, Li GY, Zhang JH, Qu SY, Shan Y (2017) Effect of drying temperature on the sugars, organic acids, limonoids, phenolics, and antioxidant capacities of lemon slices. Food Sci Biotechnol 26:1523–1533. doi: 10.1007/s10068-017-0221-0
Downey M, Harvey J, Robinson S (2003) Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust J Grape Wine R 9:110–121. doi: 10.1111/j.1755-0238.2003.tb00261.x
Dulcire B, Winternitz P (1990) Synthesis of [ring B-13C6] diosmin. J Nat Prod 53:696–698. doi: 10.1021/np50069a026
Eric E; Herve R. (2000) Method for Industrial Production of Diosmin from Hesperidin by Reaction with Iodine and Pyridine. http://europepmc.org/article/PAT/WO0011009
Gunaratne A, Gamage D, Periyannan G (2019) Applicability of instability index for in vitro protein stability prediction. Protein Peptide Lett 26:339–347. doi: 10.2174/0929866526666190228144219
Guo PP, Yan WY, Han QJ, Wang CY, Zhang ZJ (2015) Simultaneous quantification of 25 active constituents in the total flavonoids extract from Herba Desmodii Styracifolii by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Sep Sci 38:1156–1163. doi: 10.1002/jssc.201401360
Hajihasan Z, Khairkhah N, Zandsalimi F (2019) Enhanced periplasmic expression of human activin A in Escherichia coli using a modified signal peptide. Prep Biochem Biotech 50:1–7. doi: 10.1080/10826068.2019.1679177
Han XJ, Wu YF, Gao S, Yu HN, Xu RX, Lou HX, Cheng AX (2014) Functional characterization of a Plagiochasma appendiculatum flavone synthase I showing flavanone 2-hydroxylase activity. Febs Lett 588:2307–2314. doi: 10.1016/j.febslet.2014.05.023
Huang QL, Cai C (2014) Bioinformatics analysis of flavonol synthase from various plant. Guangdong Agricultural sciences 41:140–143. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-874X.2014.13.031
Huang W, Wu SB, Wang YL, Guo ZY, Kennelly E, Long CL (2013) Chemical constituents from Striga asiatica and its chemotaxonomic study. Biochem Syst Ecol 48:100–106. doi: 10.1016/j.bse.2012.10.010
Kim S, Lee H, Park K, Kim B, Ahn J (2015) Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biot 99:2233–2242. doi: 10.1007/s00253-014-6282-6
Koopman F, Beekwilder J, Crimi B, Houwelingen A, Hall R, Bosch D, Maris A, Pronk J, Daran J (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces erevisiae. Microb Cell Fact 11:155. doi: 10.1186/1475-2859-11-155
Lascala A, Martino C, Parafati M, Salerno R, Janda E (2018) Analysis of proautophagic activities of citrus flavonoids in liver cells reveals the superiority of a natural polyphenol mixture over pure flavones. J Nutr Biochem 58:119–130. doi: 10.1016/j.jnutbio.2018.04.005
Lee H, Howell S, Sanford R, Beisswenger P (2010) Methylglyoxal can modify gapdh activity and structure. Ann Ny Acad Sci 1043:135–145. doi: 10.1196/annals.1333.017
Leonard E, Chemler J, Lim K, Koffas M (2006) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biot 70:85–91. doi: 10.1007/s00253-005-0059-x
Li JH, Tian CF, Xiao YH, Mutanda I, Wang KB, Wang Y (2019) Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab Eng 52:124–133. doi: 10.1016/j.ymben.2018.11.008
Målen H, Berven F, Søfteland T, Arntzen M, D'Santos C, Souza G, Wiker H (2008) Membrane and membrane-associated proteins in Triton X-114 extracts ofMycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies. Proteomics 8:1859–1870. doi: 10.1002/pmic.200700528
Man R, Ismail A, Fuzi S, Ghazali N, Illias R (2016) Effects of culture conditions of immobilized recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell stability. Process Biochem 51:474–483. doi: 10.1016/j.procbio.2016.01.002
Marten S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukačin R (2003) Divergent evolution of flavonoid 2‐oxoglutarate‐dependent dioxygenases in parsley. Febs Lett 544:93–98. doi: 10.1016/S0014-5793(03)00479-4
Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407. doi: 10.1016/j.phytochem.2005.07.013
Pandey P, Parajuli P, Koffas M, Sohng J (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662. doi: 10.1016/j.biotechadv.2016.02.012
Park S, Ahn M, Han A, Park J, Yoon Y (2011) Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. J Microbiol Biotechn 21:1143–1146. doi: 10.4014/jmb.1108.08012
Poór M, Veres B, Jakus P, Antus C, Montskó, G, Zrínyi Z, Vladimir-Knežević S, Petrik J, Koszegi T (2014) Flavonoid diosmetin increases atp levels in kidney cells and relieves ATP depleting effect of ochratoxin A. J Photoch Photobio B 132:1–9. doi: 10.1016/j.jphotobiol.2014.01.016
Prescott A, Stamford N, Wheeler G, Firmin J (2002) In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 60:589–593. doi: 10.1016/S0031-9422(02)00155-3
Quintieri L, Palatini P, Moro S, Floreani M (2011) Inhibition of cytochrome p450 2c8-mediated drug metabolism by the flavonoid diosmetin. Drug Metab Pharmacok 26:559–568. doi: 10.2133/dmpk.DMPK-11-RG-048
Sanchez-Bridge B, Lévèques A, Li HQ, Bertschy E, Patin A, Actis-Goretta L (2015) Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in caco-2 cell model. Drug Metab Dispos 43:9–16. doi: 10.1124/dmd.114.060590
Song M, Kim E, Kim E, Rathwell K, Nam S, Yoon Y (2014) Microbial biosynthesis of medicinally important plant secondary metabolites. Nat Prod Rep 31:1497–1509. doi: 10.1039/c4np00057a
Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31455–461. doi: 10.1002/jcc.21334
Turnbull J, Nakajima J, Welford R, Yamazaki M, Saito K, Schofield C (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J Biol Chem 279:1206–1216. doi: 10.1074/jbc.M309228200
Uniprot (2019) https://www.uniprot.org/uniprot/Q7XZQ8
Uniprot (2019) https://www.uniprot.org/uniprot/Q9ZWQ9.
Uniprot (2020) https://www.uniprot.org/uniprot/G8Z369
Wang SY, Zhang SW, Zhang AF, Rasmussen M, Skidmore C, Zhan JX (2015) Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 29:153–159. doi: 10.1016/j.ymben.2015.03.011
Watts K, Lee P, Schmidt-Dannert, C (2004) Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem 5:500–507. doi: 10.1002/cbic.200300783
Wei P, Gao JX, Zheng GW, Wu H, Zong MH, Lou WY (2016) Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols. J Biotechnol 230:54–62. doi: 10.1016/j.jbiotec.2016.05.004
Welford R, Turnbull J, Claridge T, Prescott A, Schofield C (2001) Evidence for oxidation at C-3 of the flavonoid C-ring during anthocyanin biosynthesis. Chem Commun 18:1828–1829. doi: 10.1002/chin.200202243
Wellmann F, Luchard R, Moriguchi T, Britsch L, Schiltz E, Matern U (2002) Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Febs J 269:4134–4142. doi: 10.1046/j.1432-1033.2002.03108.x
Zhou TS, Yu YB, Xiao B, Bao L, Gao YF (2017) Engineering of a flavonoid 3′-hydroxylase from tea plant (camellia sinensis) for biosynthesis of b-3′,4′-dihydroxylated flavones. Acta Microbiologica Sinica 57:447–458.
Zhu SJ, Wu JJ, Du GC Zhou JW, Chen J (2014) Efficient synthesis of eriodictyol from l-tyrosine in Escherichia coli. Appl Environ Microb 80:3072–3080. doi: 10.1128/AEM.03986-13