Background: Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease of unknown aetiology, characterized by the relentless deposition of fibrotic tissue. Biomarkers may play a pivotal role as indicators of disease presence, progression, and treatment response. Sirtuins, a family of enzymes with ADP ribosyltransferase or deacetylase activity, have been implicated in several diseases, including pulmonary fibrosis.
Methods: A cross-sectional, prospective, observational single-center study was conducted to investigate the potential role of serum SIRTs levels as biomarkers in patients with IPF. Demographic, clinical, and functional data and serological samples were collected from 34 patients with IPF followed at the Interstital Lung and Rare Diseases Outpatient Clinic of the Vanvitelli Pneumology Clinic, Monaldi Hospital, Naples, Italy and from 19 age-matched controls.
Results: Serum SIRT-1 levels were significantly reduced in IPF patients compared to controls (median IPF 667 [435-858] pg/mL versus controls 925 [794-1173] pg/mL; p<.001 ). In contrast, serum SIRT-3 levels were significantly increased in IPF patients compared to controls (median IPF 338 [230-500] pg/mL versus controls 154 [99.8-246] pg/mL; p<.001). There were no statistically significant differences in serum SIRT-6 and SIRT-7 levels between IPF and controls. In addition, we found a significant positive correlation between SIRT-1 and lung function parameters such as FEV1% (ϱ=0.417;p=0.016), FVC% (ϱ=0.449;p=0.009) and DLCO% (ϱ=0.393;p=0.024), while a significant negative correlation was demonstrated between SIR-1 and GAP score, demonstrating a significant reduction in SIRT-1 in advanced Gender-Age-Physiology (GAP) stages 2-3 compared to GAP stage 1 (p=0.008).
Conclusions: This prospective, cross-sectional study showed that SIRT-1 was associated with lung function and IPF severity and that both SIRT-1 and SIRT-3 could be considered as potential biomarkers of IPF, whereas SIRT-6 and SIRT-7 were not associated with IPF.