In the robotic polishing process, the tool and the blisk interfere easily because of the narrow operation space and seriously twisted curved surfaces. Algorithms are proposed to detect and avoid collisions with high efficiency and accuracy. First, the curved surface of the blade is discretized into a set of points, and the collision detection between the tool and the blisk is converted into the calculation of distances between the tool and points on blade surface. Then, the tool axial vector is adjusted with the minimum rotation angle to avoid collision, which reduces the impact on surface profile accuracy after changing the tool postures. The machining quality is finally guaranteed by con-trolling the material removal depth of the polishing process. The proposed method realizes the collision detection and interference avoidance of the blisk polishing effectively, while it also ensures the surface quality of workpiece when adjusting the tool posture. Simulation and experiments are carried out to verify the feasibility and advantages of the proposed method.